BtL-Kraftstoff


(Weitergeleitet von Synthetische Biokraftstoffe)

BtL-Kraftstoffe (Biomass to Liquid, deutsch: Biomasseverflüssigung) sind synthetische Kraftstoffe (XtL-Kraftstoffe), die aus Biomasse hergestellt werden. Die Verfahren zur BtL-Produktion sind noch in der Entwicklung und noch nicht konkurrenzfähig.

Zu Rundballen zusammengepresstes Stroh, Stroh kann als Rohstoff zur BtL-Kraftstoffherstellung dienen
Kurzumtriebskultur aus Hybrid-Pappeln, Kurzumtriebkulturen können Rohstoffe zur BtL-Kraftstoffherstellung liefern

Prinzip und Anwendung

(siehe Artikel XtL-Kraftstoff und Fischer-Tropsch-Synthese)

Die wichtigsten Schritte des gängigsten Herstellungsverfahrens sind die Vergasung der Biomasse, bei der das sogenannte Synthesegas erzeugt wird, sowie die anschließende Synthese mit dem Fischer-Tropsch-Verfahren oder dem Methanol-to-Gasoline-Verfahren (MtG). Als Endprodukt können Kraftstoffe erzeugt werden, die sich chemisch etwas von konventionellen Kraftstoffen wie Benzin oder Diesel unterscheiden, aber ebenfalls in Otto- oder Dieselmotoren verwendet werden können. BtL-Kraftstoffe sind Biokraftstoffe der zweiten Generation. Das bedeutet, dass sie ein breiteres Rohstoffspektrum haben als Biodiesel oder Bioethanol und z. B. auch cellulosereiche Biomasse wie Stroh und Holz genutzt werden kann. Der Kraftstoffertrag pro Hektar Anbaufläche könnte somit erhöht werden.[1]

Einige andere Kraftstoffe, die ebenfalls durch eine Biomasseverflüssigung erzeugt werden, werden in der Regel nicht den BtL-Kraftstoffen zugeordnet. Dieses sind z. B. die durch Biokonversion aus Zucker, Stärke oder Cellulose erzeugen Kraftstoffe Bioethanol und Cellulose-Ethanol sowie Furanics. Bei einer pyrolytischen Direktverflüssigung von Biomasse zu Pyrolyseöl kann dieses nach Aufbereitung zu Kraftstoff umgewandelt werden.

Mehrere Verfahrensschritte sind bei der Produktion von BtL-Kraftstoffen notwendig:

  • 1. Rohstoffbereitstellung
  • 2. Vergasung (Pyrolyse)
  • 3. Gasreinigung/ Gasaufbereitung (inklusive Kohlendioxid-Shift)
  • 4. Synthese (z. B. Fischer-Tropsch-Synthese)
  • 5. Produktaufbereitung (Raffinierung des Syntheseprodukts)

Die Bereitstellung der Rohstoffe unterscheidet sich von den anderen XtL-Kraftstoffen, die aus Gas oder Kohle hergestellt werden. Die Schritte der Vergasung und der Gasreinigung unterscheiden sich ebenfalls deutlich vom GtL-Herstellungsprozess, ähneln aber teilweise dem CtL-Herstellungsprozess. Die Synthese kann hingegen bei allen XtL-Herstellungen gleich ablaufen, wenn dasselbe Verfahren (z. B. Fischer-Tropsch-Synthese) verwendet wird.

Während die Verfahren zur Herstellung von CtL- und GtL-Kraftstoffen etabliert sind, befinden sich Verfahren zur BtL-Kraftstoff-Herstellung noch in der Entwicklung bzw. in einer frühen Phase der Praxiserprobung. Hauptsächlich wird derzeit an der Herstellung von BtL-Dieselkraftstoffen geforscht.

Geschichtlicher Hintergrund

(siehe Artikel Fischer-Tropsch-Synthese)

CtL-Kraftstoffe wurden bereits in den 1940ern im Deutschen Reich und nach dem Zweiten Weltkrieg bis heute in Südafrika in großtechnischem Maßstab hergestellt. Auch die Herstellung von GtL-Kraftstoffen ist seit den 1990ern etabliert. Im Zuge der Energiewende rückten Erneuerbare Energien und damit auch Biokraftstoffe wie Biodiesel, Bioethanol und BtL in den Fokus. Im Rahmen der Klimaveränderung und wegen des begrenzten und somit teurer werdenden Erdöls wurden in den Industrieländern große Kapazitäten für die Biokraftstoffe der ersten Generation (z. B. Biodiesel, Bioethanol) aufgebaut. BtL-Kraftstoffe werden als Biokraftstoffe der zweiten Generation vor allem in Europa politisch stark gefördert.

Vergleich von Biokraftstoffen in Deutschland
Biokraftstoff Ertrag/ha Kraftstoffäquivalenz
[l][2][* 1]
Kraftstoffäquivalent
pro Fläche [l/ha][* 2]
Preis
[cent]
Preis Kraftstoff-
äquivalent [cent/l][* 3]
Fahrleistung
[km/ha][2][* 4]
Pflanzenöl (Rapsöl) 1590 l[2] 0,96 1526 98,1/l (11/2009)[3] 102,2 23300 + 17600[* 5]
Biodiesel (Rapsmethylester) 1550 l[4] 0,91 1411 107,9/l (KW 49/2009)[5] 118,6 23300 + 17600[* 5]
Bioethanol (Weizen) 2760 l[2] 0,65 1794 93,2/l (E85, 11/2009)[6] 133,1 22400 + 14400[* 5]
Biomethan 3540 kg[4] 1,4 4956 93/kg (06/2008)[7] 66,4 67600
BtL 4030 l[4] 0,97[* 6] 3909 nicht am Markt k.a 64000
  1. 1 l Biokraftstoff bzw. 1 kg Biomethan entspricht dieser Menge konventionellen Kraftstoffs
  2. ohne Nebenprodukte
  3. Preis für die Menge Biokraftstoff, die äquivalent zu 1 l konventionellem Kraftstoff ist
  4. separate Berechnung, nicht auf den anderen Daten basierend
  5. 5,0 5,1 5,2 mit Biomethan aus Nebenprodukten Rapskuchen/ Schlempe/ Stroh
  6. auf Basis von FT-Kraftstoffen


Herstellung

Verfahrensschema der Herstellung von BtL-Kraftstoffen

Rohstoffbereitstellung und -aufbereitung

Die Herstellung von BtL beginnt meist damit, die stark wasserhaltige Biomasse zu trocknen. Als Ausgangsmaterial können sowohl Biomasseabfälle wie Stroh oder Restholz als auch speziell für die Kraftstofferzeugung angebaute Nutzpflanzen (Energiepflanzen, z. B. in Kurzumtriebsplantagen) Verwendung finden. Nach einer je nach Verfahren und Anlagentechnik erforderlichen Zerkleinerung und Reinigung der Pflanzenteile erfolgt die Vergasung. Zu beachten ist dabei, dass oftmals nur die Heizwerte der eingesetzten Stoffe betrachtet werden. Da diese aber massebezogen ermittelt werden, bleibt die unterschiedliche Dichte der Stoffe, die beispielsweise bei Stroh zu deutlich größeren zu transportierenden und zu verarbeitenden Stoffvolumen führt, bei der Betrachtung meist unberücksichtigt. So haben Buche und Fichte zwar fast den gleichen Heizwert von etwa 15 MJ/kg, die Dichte (das Volumen) unterscheidet sich aber deutlich: 0,77 bzw. 0,44 kg/dm3. Unter Berücksichtigung der großen notwendigerweise zu transportierenden und zu verarbeitenden Volumina ist auch die Verarbeitung von Reststoffen, schnellwachsender Biomasse oder Stroh kritisch zu betrachten.

Vergasung

Der erste Schritt ist bei den hier behandelten Syntheseverfahren eine verschieden stark vollendete thermische Spaltung, die Pyrolyse. Bei Temperaturen von ca. 200°C bis über 1000°C wird die physische und chemische Struktur der Biomasse umgewandelt. Lange Molekülketten werden durch den Wärmeeinfluss gespalten. Es entstehen zahlreiche unterschiedliche flüssige und gasförmige Kohlenwasserstoffe mit kürzerer Kettenlänge sowie mit fortschreitendem Verlauf auch vermehrt Kohlenmonoxid, Kohlendioxid, Kohlenstoff und Wasser. Während durch (Luft-)Sauerstoffmangel die vollständige Oxidation zu Kohlendioxid und Wasser verhindert wird, lässt sich die weitere Beschaffenheit der Pyrolyseprodukte neben den primären Prozessbedingungen Temperatur, Druck und Verweilzeit im Reaktor auch durch zugeführte chemische Reaktanten und Katalysatoren beeinflussen. Weitere Varianten der Vergasung sind möglich. Wenn die Reaktion in einer flüssigen Lösung durchgeführt wird, die gleichzeitig Reaktionspartner ist, spricht man auch von einer Solvolyse, bei einer Wasserstoffatmosphäre dagegen von einer Hydrogenolyse.

Carbo-V-Verfahren

Dieses spezielle Verfahren beruht auf einem zweistufigen Prozess, wobei zuerst bei 400–500°C die stückige Biomasse in Koks (Biokoks) und teerhaltiges Schwelgas zerlegt wird. Während der Biokoks ausgeschleust wird, erfolgt bei ca. 1500 °C eine Flugstromvergasung des Schwelgases, so dass die längerkettigen Kohlenwasserstoffe in einfache Moleküle und damit in ein teerfreies Synthesegas zerlegt werden können. Die hohe Temperatur dieses Gases wird anschließend benutzt, um den ausgeschleusten und zermahlenen Biokoks bei nun 900 °C ebenfalls zu vergasen. Der Rohstoff kann dadurch vollständiger genutzt werden als bei anderen Verfahren. Das damit entstandene Rohgas ist teerfrei und nach dem Entstauben und Waschen von ähnlicher Qualität wie aus Erdgas erzeugtes Synthesegas.

Verflüssigung

Wird die Pyrolyse weniger vollständig durchgeführt, entsteht statt eines Gases ein flüssiges Produkt, das auch als Pyrolyseöl bezeichnet wird. Dieses Verfahren könnte z. B. eingesetzt werden, um bei Rohstoffen mit geringer Dichte, wie z. B. Stroh, die Transportwürdigkeit zu erhöhen. Anschließend kann eine Vergasung an der BtL-Produktionsanlage erfolgen.

Synthese

Der nachfolgende Schritt ist der Syntheseschritt, bei dem die Spaltprodukte im Synthesegas durch chemische Reaktion zum BtL-Kraftstoff aufbereitet werden. Meist findet eine an das Fischer-Tropsch-Verfahren angelehnte Synthese zur Erzeugung der BtL-Kraftstoffe statt.

Dieses Verfahren wurde in der Pilotanlage der Choren Industries GmbH angewandt. Dabei wurde das Carbo-V-Verfahren zur Produktion von Biogas mit der von Shell entwickelten Shell Middle Distillate Synthesis, einem weiterentwickelten Fischer-Tropsch-Verfahren, kombiniert. Shell erzeugt damit im großindustriellen Maßstab im malaysischen Bintulu schon GtL-Kraftstoff aus Erdgas und mischt ihn seinem „V-Power“-Kraftstoff bei.

Eine weitere Anlage im vorläufig kleineren Maßstab ist die Anlage in Güssing (Österreich)[8]. Hier wird mit einer Holzwirbelschichtvergasung Synthesegas hergestellt, das derzeit noch in einem Motor verbrannt wird. An der Installation einer Fischer-Tropsch-Anlage wird gearbeitet. Ab Frühling 2007 soll es gasförmigen Treibstoff an einer Tankstelle geben. Flüssige Treibstoffe sollen etwa ab Herbst 2007 angeboten werden.

Produktaufbereitung

Das Produkt der Synthese ist ein Gemisch verschiedenster Kohlenwasserstoffe. Um eine Nutzung als Kraftstoff zu ermöglichen ist eine Aufbereitung notwendig, die z. B. auf Verfahren aus der Erdölraffination zurückgreift (z. B. Destillation, Rektifikation). So erfolgt z. B. die Gewinnung von BtL-Benzin und BtL-Diesel aus dem Syntheseprodukt. In einem begrenzten Rahmen lässt sich die Synthese steuern, so dass z. B. eine bevorzugte Herstellung von BtL-Diesel möglich ist.

Andere Herstellungsverfahren

Eine Herstellung von BtL-Kraftstoff kann auch mit anderen Verfahren erfolgen, die aber zur Unterscheidung meist eine eigene Bezeichnung haben. Teilweise liegt als Zwischenprodukt kein Synthesegas sondern eine Flüssigkeit (Pyrolyseöl) vor:

  • Flash-Pyrolyse mit sehr kurzen Verweilzeiten im Reaktor[9], der
  • Katalytischen Direktverflüssigung, bei der die Pyrolyse in einem Ölsumpf mit Katalysatorbeimengung erfolgt[10], und der
  • Hydrierenden Direktverflüssigung, bei der durch (Druck-)Wasserstoff während der Pyrolyse stabile Produktkohlenwasserstoffe entstehen.
  • Mechanisch mineralische Umwandlung, bei der dieselähnlicher synthetischer Kraftstoff erzeugt wird

Bei diesen Verfahren, entsteht eine Produktflüssigkeit (Biorohöl oder Biocrude Oil genannt) die hauptsächlich lipophile (wasserunlösliche) Stoffe enthalten kann. In einem weiteren Schritt erfolgt die Verarbeitung zu Biokraftstoff mit Hilfe gängiger petrochemischer Verfahren.

Entsprechende Anlagen existieren derzeit an verschiedenen Standorten in Deutschland, u. a. beim „Departement Verfahrenstechnik“ der HAW Hamburg (Technikumsmaßstab), sowie bei einigen kommerziellen Betreibern („HP-DoS“-Verfahren, Produktionsvorstufe).

Auch an anderen Instituten wird an der Entwicklung von Herstellungsverfahren gearbeitet, wie z. B. am Forschungszentrum Karlsruhe mit dem bioliq-Verfahren.[11]

Kraftstoffeigenschaften

Es gibt derzeit nur Messwerte aus Pilotanlagen[12]. Fischer-Tropsch-Kraftstoffe werden einen 7 % geringeren volumetrischen Energieinhalt im Vergleich zu Diesel haben, eine niedrigere Viskosität und eine deutlich höhere Cetanzahl[13]. Die Emissionen durch BtL-Kraftstoff sind geringer als bei fossilem Brennstoff (siehe Absatz Umweltauswirkungen). BtL-Diesel bzw. -Benzin sind ohne umfassende Umrüstung in den gängigen Diesel- bzw. Ottomotoren nutzbar.

Umweltauswirkungen

Mechanisierte Ernte einer Kurzumtriebsplantage mit einem umgerüsteten Maishäcksler

Bei den Umweltauswirkungen kann zwischen den Folgen des Biomasseanbaus und den Emissionen bei der Nutzung durch Verbrennung des BtL unterschieden werden. Für eine Gesamtbilanz ist aber der komplette Prozess inklusive der aufwendigen Herstellung zu betrachten.

Anbau

Die Umweltauswirkungen der Herstellung von BtL-Treibstoff hängen vor allem von der Art der eingesetzten Biomasse ab. Wie bei anderen Biotreibstoffen auch führt die Verwendung von Abfällen oder Waldholz zu eher geringeren Umweltbelastungen. Bei Verwendung von Energiepflanzen sind die Umweltbelastungen hingegen höher und die Treibhausgaseinsparungen geringer. Ein weiteres wichtiges Kriterium ist der Umwandlungsgrad, der auch davon abhängt, ob im Verfahren noch Strom und Wärme produziert werden[1]. Es besteht also ein Zielkonflikt zwischen hohen Treibstofferträgen pro Fläche auf der einen Seite und möglichst geringen Umweltbelastungen auf der anderen Seite.

Etwa 5 bis 10 Kilogramm Holz sind notwendig, um 1 kg BtL zu produzieren[14]. Ersten optimistischen Schätzungen zufolge soll sich auf einem Hektar Ackerland so viel Biomasse anbauen lassen, dass daraus jährlich ca. 4000 Liter BtL-Kraftstoff hergestellt werden können[15]. Neuere Berechnungen in einem europäischen Forschungsprojekt ergaben maximal 2300 kg BtL-Kraftstoff pro Hektar bei der Nutzung von Kurzumtriebsholz. Die Umwandlungsgrade und Flächenerträge schwanken dabei je nach Verfahren und Art der Biomasse.[14]

Nutzung

Theoretisch kann jeder Dieselmotor auch mit BtL-Kraftstoff betrieben werden. In ersten Praxismessungen ergab sich ein verringerter Ausstoß von (unverbrannten) Kohlenwasserstoffen (um 40 %) sowie von Kohlenmonoxid und Rußpartikeln bei der Verbrennung. Grund ist das, im Gegensatz zu fossilen Kraftstoffen, Fehlen von aromatischen Verbindungen. Da auch keine Schwefelverbindungen enthalten sind, werden auch hier Emissionen verringert. Allerdings musste auch ein leichter Leistungsverlust hingenommen werden. Für eine vollständige Beurteilung müssen jedoch auch die zusätzlichen Emissionen dieser Schadstoffe bei der Treibstoffherstellung berücksichtigt werden, die diese Minderemissionen bei der Verbrennung teilweise aufwiegen.[1]

Vor- und Nachteile

(zu allgemeinen Vor- und Nachteilen von Bioenergien siehe auch Artikel Bioenergie)

Vorteile

  • Verbesserung der Außenhandelsbilanz in vielen von Erdölimporten abhängigen Ländern, durch Verringerung der Erdölimporte.
  • BtL-Kraftstoffe haben ähnliche Vorteile wie andere erneuerbare Energien, wie
    • Reduktion von fossilen CO2-Emissionen
    • Schonung fossiler Ressourcen
    • größere Unabhängigkeit von Energieimporten
    • Stärkung der regionalen Wirtschaft
  • Für die BtL-Herstellung kann theoretisch jede verfügbare pflanzliche Biomasse verwendet werden, wie Pflanzenabfälle, Laub, Restholz und andere, bisher ungenutzte Biomasse. Damit wird auch eine Nutzungs- (z. B. zur Nutzung von Rohstoffen zur Nahrungsmittelproduktion) und Flächenkonkurrenz vermieden. Allerdings wird dadurch auch das Potential der BtL-Kraftstoffe begrenzt.
  • Der jährliche Holzzuwachs in Deutschland beträgt etwa 65 Mio. m3, was 4 % Massenzunahme entspricht. Rund ein Viertel des jährlichen Dieselbedarfs könnte damit theoretisch gedeckt werden. Allerdings besteht eine Nutzungskonkurrenz z. B. zur stofflichen Nutzung (Nutzholz) und zur Herstellung von Holzpellets oder Cellulose-Ethanol.
  • Die gängigen Diesel- bzw. Ottomotoren können die entsprechenden BtL-Kraftstoffe ohne Umrüstung nutzen, während andere Biokraftstoffe (Ethanol, Pflanzenöl) eine Anpassung erfordern können. Auch die vorhandene Infrastruktur (Tankstellen) ist weiterhin nutzbar.

Nachteile

  • Das Potential an bisher ungenutzter Biomasse ist begrenzt. Ein umfassender Ausbau der BtL-Herstellung würde somit auch zu einer verstärkten Flächen- und Nutzungskonkurrenz führen, da landwirtschaftliche und forstwirtschaftliche Flächen verstärkt hierfür genutzt werden müssten.
  • Die Herstellungskosten für BtL werden hoch eingeschätzt, so dass mit den derzeitigen Herstellungsverfahren eine Konkurrenzfähigkeit mit konventionellen Kraftstoffen nur bei finanzieller Förderung möglich erscheint.
  • Ein weiterer Biokraftstoff, der sich in der Entwicklung befindet, ist Cellulose-Ethanol. Für seine Herstellung würden ähnliche Rohstoffe wie für BtL benötigt. Unklar ist, welches Verfahren geeigneter ist.
  • Bei der thermischen Umwandlung gehen je nach Verfahren und Nebenprodukten (Strom, Wärme, Naphtha) 30 bis 60 % der in der Biomasse gespeicherten Energie verloren. Der Treibstoffertrag pro Hektar ist damit nicht zwingend höher als bei anderen Biotreibstoffen und kann je nach Ausgangsmaterial und Verfahren stark schwanken[1]. Zudem ist der Aufwand für Ernte, Transport, Schreddern und anderes zu berücksichtigen.

Produktion und Markteinführung

2005 vereinbarte Choren Industries mit dem Mineralölkonzern Shell, die weltweit erste großtechnische Fertigungsanlage für 18 Mio. Liter BtL-Kraftstoff im Jahr zu errichten. Am 6. Juli 2011 wurde über das Vermögen der Choren Industries die vorläufige Insolvenzverwaltung angeordnet.

Als allgemein wichtig werden die industriepolitischen Rahmenbedingungen erachtet, wie z. B. die bisher nur bis 2015 im Rahmen des Energiesteuergesetzes zugesagten Steuerbegünstigungen für besonders förderwürdige Biokraftstoffe wie BtL, Cellulose-Ethanol und Biomethan.

Siehe auch

  • Biomassepotential

Literatur

  • Martin Kaltschmitt, Hans Hartmann und Hermann Hofbauer (Hrsg.), Energie aus Biomasse. Grundlagen, Techniken und Verfahren. Springer Verlag (2009), 2. Auflage, S. 685-690, ISBN 978-3-540-85094-6
  • Dr. Norbert Schmitz, Dr. Jan Henke, Prof. Gernot Klepper : Biokraftstoffe - Eine vergleichende Analyse; Fachagentur Nachwachsende Rohstoffe e. V. (FNR), Gülzow (2009), 2. Neuauflage, 167-seitig, als pdf erhältlich

Weblinks

Einzelnachweise

  1. 1,0 1,1 1,2 1,3 ESU-services: Ökobilanz der Nutzung synthetischer Biotreibstoffe
  2. 2,0 2,1 2,2 2,3 Biokraftstoffe Basisdaten Deutschland, Stand Oktober 2009 Fachagentur Nachwachsende Rohstoffe e. V. (FNR), Gülzow, 2009, 14-seitige Broschüre, als pdf verfügbar
  3. Preisentwicklung von Rapsöl als Kraftstoff, CARMEN e. V., aktuelle Preisnotierungen, abgerufen am 04.12.2009
  4. 4,0 4,1 4,2 Biokraftstoffe Basisdaten Deutschland, Stand Januar 2008 Fachagentur Nachwachsende Rohstoffe e. V. (FNR), Gülzow, 2008, Broschüre, wegen aktualisierter Version nicht mehr als pdf verfügbar
  5. Preisentwicklung von Biodiesel, UFOP, aktuelle Preisnotierungen, abgerufen am 04.12.2009
  6. Preisentwicklung von Bioethanol E85, CARMEN e. V., aktuelle Preisnotierungen, abgerufen am 04.12.2009
  7. Biogastankstelle Jameln
  8. Europäisches Zentrum für Erneuerbare Energie Güssing
  9. HAW-Hamburg, Forschungsbericht 2004/2005, [1], Seiten 33 und 38 ff.
  10. Willner, Th.: Direktverflüssigung von Biomasse am Beispiel der Entwicklungen der HAW Hamburg. Gülzower Fachgespräche, Band 28, Hrsg. Fachagentur Nachwachsende Rohstoffe, Gülzow 2008, S. 54-86
  11. Forschungszentrum Karlsruhe - Programm Erneuerbare Energien
  12. RENEW Homepage
  13. Biokraftstoffe; Basisdaten Deutschland; Stand: Januar 2008
  14. 14,0 14,1 Life Cycle Assessment of BtL-fuel production: Inventory Analysis
  15. BtL-Informationsplattform

Die News der letzten Tage