Photosystem

Übergeordnet
Thylakoid
Untergeordnet
Photosystem I
Photosystem II
Gene Ontology
QuickGO

Ein Photosystem (auch Fotosystem) ist eine Ansammlung von Proteinen und Pigment-Molekülen (Chlorophylle und Carotinoide) in der Thylakoid-Membran von Cyanobakterien und Chloroplasten, die bei der Lichtreaktion der oxygenen Photosynthese Lichtenergie in chemische Energie umwandeln. Sie kommen bei phototrophen Cyanobakterien und eukaryotischen Lebewesen (Pflanzen und Protisten) vor.

Aufbau und Funktion

Ein Photosystem setzt sich aus einem sogenannten Antennenkomplex und aus einem Reaktionszentrum zusammen.

Der Antennenkomplex (auch Lichtsammelkomplex) besteht je nach Typus des Photosystems aus zirka 30 Proteinen, die mit Pigmentmolekülen verbunden sind. Sie werden durch das Licht in einen energiereichen, angeregten Zustand angehoben. Durch Exzitonentransfer kann diese Energie an das Reaktionszentrum weitergeleitet werden.[1] Die Effizienz der Energieübertragung im Lichtsammelkomplex auf ein Reaktionszentrum beträgt mehr als 90 % und erfolgt in 10−13 Sekunden.

Das Reaktionszentrum der Photosysteme enthält zwei Chlorophylle, die als primärer Elektronendonator fungieren. Durch die Lichtenergie wird eine Elektronentransportkette in Gang gesetzt.

Im Photosystem II werden in einem Zyklus mittels 4 Lichtquanten Elektronen vom Wasser an ein Chinon übertragen und gleichzeitig Protonen aus der Wasserspaltung freigesetzt. Dabei entsteht als Nebenprodukt Sauerstoff. Der wasserspaltende Komplex enthält ein Cluster von vier Manganatomen, wobei der genaue Aufbau dieser Einheit spektroskopisch noch nicht geklärt werden konnte, da gängige Röntgenstrukturanalysen die Manganatome reduzieren und dadurch das erhaltene Spektrum nicht der nativen Struktur des katalytischen Zentrums entspricht. Es wird angenommen, dass jeweils drei Manganatome durch Sauerstoffatome miteinander verbrückt sind und ein Manganatom etwas weiter entfernt wie ein Anhängsel „hängt“.

Im Photosystem I führt der lichtgetriebene Elektronentransfer zur Synthese von NADPH + H+.

Typen

  • Das Photosystem I enthält insgesamt zirka 200 Moleküle Chlorophyll a und b sowie 50 Carotine. Das Reaktionszentrum des Photosystems I hat ein Absorptionsmaximum bei einer Wellenlänge von 700 nm, es wird deshalb auch als „P700“ bezeichnet.
  • Das Photosystem II enthält insgesamt zirka 250 Moleküle Chlorophyll a und b sowie ca. 110 Carotinoide. Das Reaktionszentrum des Photosystems II hat ein Absorptionsmaximum bei 680 nm („P680“).

Anaerobe Schwefelbakterien haben ein Photosystem, das dem PSI ähnlich ist.

Anregung durch Licht

Vereinfachtes Termschema (Jablonski-Diagramm) von Chlorophyll a. Die Elektronen-Niveaus (Terme) sind aus mehreren Vibrationstermen (Abstand circa 0,1 eV) zusammengesetzt, die ihrerseits wieder aus Rotationstermen im Abstand von 0,02 bis 0,001 eV bestehen.

Chlorophylle fungieren als lichtabsorbierende Komponente der Photosysteme. Chlorophylle bestehen aus einem Porphyrin-Ring, welcher ein Magnesium-Ion (Mg2+) komplexiert.

Das System der delokalisierten π-Elektronen des Chlorophylls ist der Ort der Lichtabsorption: Durch Zufuhr von Lichtenergie kann ein Elektron aus dem Grundzustand S0 auf höhere Energie-Niveaus angehoben werden. Dieser energiereichere Zustand des Chlorophylls wird als angeregter Zustand bezeichnet. Zur Anregung sind aber nur zwei Wellenlängen geeignet: energieärmeres rotes Licht (bei Chlorophyll a eine Wellenlänge von 662 nm) hebt das Elektron auf ein höheres Niveau an (1. Singulett, S1), energiereicheres blaues Licht (430 nm) auf ein noch höheres Niveau (2. Singulett, S2).

Übergänge Halbwertszeit τ½ in Sekunden Form der abgegebenen Energie Anteil Symbol in der Abbildung
S2 → S1 10−12 Wärme   gelber Pfeil
S1 → S0 10−9 Emission von Licht (Fluoreszenz) 8 % F
Emission eines Elektrons (photochemische Redoxreaktion)   R
strahlungsloser Energietransfer auf Nachbarmoleküle   E
T1 → S0 10−2 Phosphoreszenz bei 750 nm   P

Da auf Grund der großen Halbwertszeit des Übergangs vom Triplett- in den Grundzustand der Triplettzustand sehr stabil ist, werden die langsamen photochemischen Prozesse im isolierten Chlorophyll von diesem Zustand aus gestartet, nicht aber in der intakten Thylakoid-Membran. Dort wird ausgehend vom S1-Zustand die Energie eines nahezu jeden Lichtquants für die Lichtreaktion genutzt. Damit steht von jedem absorbierten Quant, gleichgültig ob aus dem blauen oder roten Bereich ein Energiebetrag von 174 kJ/mol zur Verfügung. Je schlechter aber die Lichtreaktionen ablaufen, desto höher wird der Fluoreszenz-Anteil, und damit der Verlust an nutzbarer Energie.

Siehe auch

Literatur

  • Gerhard Trageser: Nobelpreis für Chemie: Licht in die Lichtreaktion. In: Spektrum der Wissenschaft. Jg. 1988, Nr. 12, S. 14 ff.
  • Donat-Peter Häder (Hrsg.): Photosynthese. Georg Thieme Verlag, Stuttgart, New York 1999, ISBN 3-13-115021-1

Weblinks

Einzelnachweise

  1. Bas Gobets, Rienk van Grondelle: Energy transfer and trapping in photosystem I. In: Biochim. Biophys. Acta. 1507, 2001, S. 80–99.

Diese Artikel könnten dir auch gefallen

Die letzten News

05.03.2021
Mikrobiologie | Zytologie
Neue Form der Symbiose entdeckt
Sie werden auch Kraftwerke der Zellen genannt: Die Mitochondrien.
05.03.2021
Insektenkunde | Video
Ameisenforscherin Susanne Foitzik untersucht die Weltmacht auf sechs Beinen
Onlinebeitrag der Sendung natürlich!: Ameisenforscherin Susanne Foitzik untersucht die "Weltmacht auf sechs Beinen"
03.03.2021
Ökologie | Land-, Forst- und Viehwirtschaft
Produktion nachhaltiger Lebensmittel in Aquakulturen
Eine nachhaltige Lebensmittelproduktion in Aquakulturen ganz ohne Mikroplastik. Das ist das langfristige Ziel eines neuen und über zwei Jahre laufenden Forschungsprojektes.
03.03.2021
Botanik | Biochemie | Entwicklungsbiologie
Wie eine Pflanze ihr Wachstum reguliert
Pflanzen zeigen polares Wachstum: Der Spross von Pflanzen wächst zum Licht, um dieses optimal nutzen zu können und die Wurzeln wachsen in Richtung des Erdmittelpunktes in den Boden.
02.03.2021
Zytologie | Genetik
Genetisches Material in Taschen verpacken
Alles Leben beginnt mit einer Zelle.
02.03.2021
Biodiversität
Artenspürhunde - Schnüffeln für die Wissenschaft
Die Listen der bedrohten Tiere und Pflanzen der Erde werden immer länger.
28.02.2021
Anthropologie | Genetik
64 menschliche Genome als neue Referenz für die globale genetische Vielfalt
Eine internationale Forschungsgruppe hat 64 menschliche Genome hochauflösend sequenziert.
28.02.2021
Neurobiologie | Insektenkunde
Wie Insekten Farben sehen
Insekten und ihre hochentwickelte Fähigkeit Farben zu sehen und zum Beispiel Blüten unterscheiden zu können, sind von zentraler Bedeutung für die Funktion vieler Ökosysteme.
28.02.2021
Genetik | Virologie
Retroviren schreiben das Koala-Genom um
Koalas sind mit zahlreichen Umwelt- und Gesundheitsproblemen konfrontiert, die ihr Überleben bedrohen.
26.02.2021
Ökologie | Paläontologie
Student entwickelt ein neues Verfahren, um Millionen Jahre alte Ökosysteme zu rekonstruieren
Niklas Hohmann, Masterstudent der Geowissenschaften an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), hat einen neuen Algorithmus entwickelt, mit dem sich die Abfolge von Ökosystemen durch die Erdgeschichte besser rekonstruieren lässt.
26.02.2021
Klimawandel | Biodiversität | Land-, Forst- und Viehwirtschaft
Unterirdische Biodiversität im Wandel
Durch den globalen Wandel wird die Vielfalt der Bakterien auf lokaler Ebene voraussichtlich zunehmen, während deren Zusammensetzung sich auf globaler Ebene immer ähnlicher wird.
25.02.2021
Botanik | Ökologie | Klimawandel | Video
Wald im Trockenstress: Schäden weiten sich weiter aus
Ergebnisse der Waldzustandserhebung 2020 zeigen: Die anhaltenden Dürrejahre fordern Tribut.
24.02.2021
Physiologie | Primatologie
Geophagie: Der Schlüssel zum Schutz der Lemuren?
Kürzlich wurde eine transdisziplinäre Forschung über die Interaktionen zwischen Böden und Darm-Mykobiom (Pilze und Hefen) der Indri-Indri-Lemuren veröffentlicht.
24.02.2021
Mikrobiologie | Evolution
Vom Beginn einer evolutionären Erfolgsstory
Unser Planet war bereits lange von Mikroorganismen besiedelt, bevor komplexere Lebewesen erstmals entstanden und sich nach und nach zur heute lebenden Tier- und Pflanzenwelt entwickelten.
24.02.2021
Genetik
Cre-Controlled CRISPR: konditionale Gen-Inaktivierung wird einfacher
Die Fähigkeit, ein Gen nur in einem bestimmten Zelltyp auszuschalten, ist für die modernen Lebenswissenschaften wesentlich.
24.02.2021
Land-, Forst- und Viehwirtschaft | Fischkunde
Bald nur noch ängstliche Fische übrig?
Über die Fischerei werden vor allem größere und aktivere Fische aus Populationen herausgefangen.
23.02.2021
Anthropologie | Neurobiologie
Placebos wirken auch bei bewusster Einnahme
Freiburger Forschende zeigen: Scheinmedikamente funktionieren auch ohne Täuschung. Probanden waren über Placebo-Effekt vorab informiert.
23.02.2021
Botanik | Klimawandel
Auswirkungen des Klimas auf Pflanzen mitunter erst nach Jahren sichtbar
Die Auswirkungen von Klimaelementen wie Temperatur und Niederschlag auf die Pflanzenwelt werden möglicherweise erst Jahre später sichtbar.
23.02.2021
Ökologie | Klimawandel
Biologische Bodenkrusten bremsen Erosion
Forschungsteam untersucht, wie natürliche „Teppiche“ Böden gegen das Wegschwemmen durch Regen schützen.
23.02.2021
Mikrobiologie | Meeresbiologie
Süße Algenpartikel widerstehen hungrigen Bakterien
Eher süß als salzig: Mikroalgen im Meer produzieren jede Menge Zucker während der Algenblüten.
21.02.2021
Evolution | Biochemie
Treibstoff frühesten Lebens – organische Moleküle in 3,5 Milliarden Jahre alten Gesteinen nachgewiesen
Erstmalig konnten biologisch wichtige organische Moleküle in archaischen Fluideinschlüssen nachgewiesen werden. Sie dienten sehr wahrscheinlich als Nährstoffe frühen Lebens auf der Erde.
21.02.2021
Evolution | Biochemie
Origin of Life - Begann die Darwin’sche Evolution schon, bevor es Leben gab?
Ehe Leben auf der Erde entstand, gab es vor allem eines: Chaos.
21.02.2021
Anthropologie | Neurobiologie
Kommunikationsfähigkeit von Menschen im REM-Schlaf
Mit schlafenden Versuchspersonen lassen sich komplexe Nachrichten austauschen. Das haben Wissenschaftler jetzt in Studien gezeigt.
21.02.2021
Paläontologie | Insektenkunde
Fossile Larven - Zeitzeugen in Bernstein
Eine ungewöhnliche Schmetterlingslarve und eine große Vielfalt an Fliegenlarven. LMU-Zoologen haben in Bernstein fossile Bewohner Jahrmillionen alter Wälder entdeckt.
21.02.2021
Ethologie | Ökologie
Wölfe in der Mongolei fressen lieber Wild- als Weidetiere
Wenn das Angebot vorhanden ist, ernähren sich Wölfe in der Mongolei lieber von Wildtieren als von Weidevieh.