Poincaré-Abbildung
- Seiten mit defekten Dateilinks
- Wikipedia:Vorlagenfehler/Vorlage:Literatur/Temp4
- Wikipedia:Vorlagenfehler/Vorlage:Literatur/Parameterfehler
- Theorie dynamischer Systeme
Die Poincaré-Abbildung (auch Poincaré map, first return map, nach dem französischen Mathematiker Henri Poincaré) ist eine mathematische Methode zur Untersuchung des Flusses eines kontinuierlichen n-dimensionalen dynamischen Systems. Dazu betrachtet man die Schnittpunkte einer Trajektorie mit einer (n-1)-dimensionalen transversalen Hyperfläche
Beispiel
Betrachte die Differentialgleichung
Anwendung
Die Poincaré-Abbildung ist besonders zur Untersuchung der geometrischen Strukturen chaotischer Attraktoren geeignet, da die zeitliche Diskretisierung eine wesentliche Vereinfachung darstellt.[1]
Literatur
- Herbert Amann: Gewöhnliche Differentialgleichungen. 2. Auflage. de Gruyter, Berlin 1995, ISBN 3-11-014582-0.
- Vorlage:EoM
- Gerald Teschl: Ordinary Differential Equations and Dynamical Systems (= Graduate Studies in Mathematics. Band 140). American Mathematical Society, Providence 2012, ISBN 978-0-8218-8328-0 (freie Onlineversion).
Einzelnachweise
- ↑ Manfred von Ardenne et. al.: Effekte der Physik und ihre Anwendungen. Verlag Harry Deutsch, Frankfurt 2005. ISBN 3-8171-1682-9 S. 1130