Äpfelsäure

Strukturformel
Strukturformel D-Äpfelsäure   Strukturformel L-Äpfelsäure
D-Äpfelsäure                 L-Äpfelsäure
Allgemeines
Name Äpfelsäure
Andere Namen
  • Apfelsäure
  • 2-Hydroxybernsteinsäure
  • 2-Hydroxybutandisäure
  • 2-Hydroxybutan-1,4-disäure
  • E 296
Summenformel C4H6O5
CAS-Nummer
  • 97-67-6 (L-(–)-Äpfelsäure)
  • 636-61-3 (D-(+)-Äpfelsäure)
  • 6915-15-7 (DL-(±)-Äpfelsäure)
Kurzbeschreibung

weißer Feststoff[1]

Eigenschaften
Molare Masse 134,09 g·mol−1
Aggregatzustand

fest

Dichte

1,6 g·cm−3[1]

Schmelzpunkt
  • 131–133 °C (DL-Äpfelsäure)[1]
  • 100–101 °C (D- oder L-Äpfelsäure)[2]
pKs-Wert
  • pKs1 = 3,46[3]
  • pKs2 = 5,10[3]
Löslichkeit
  • DL-Äpfelsäure:
    gut in Wasser (558 g·l−1 bei 20 °C)[2],
    in Ethanol: 455,3 g·l−1[2]
  • D- oder L-Äpfelsäure:
    gut in Wasser (363,5 g·l−1 bei 20 °C)[2],
    in Ethanol: 866,0 g·l−1[2]
  • löslich in Aceton, mäßig löslich in Diethylether[3]
Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung [1]
05 – Ätzend

Gefahr

H- und P-Sätze H: 318-335-315
P: 261-​302+352-​305+351+338-​321-​405-​501Vorlage:P-Sätze/Wartung/mehr als 5 Sätze [1]
EU-Gefahrstoffkennzeichnung [1]
Reizend
Reizend
(Xi)
R- und S-Sätze R: 36
S: keine S-Sätze
LD50

1600 mg·kg−1 (Maus, oral)[4]

Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.
Vorlage:Infobox Chemikalie/Summenformelsuche vorhanden

Äpfelsäure (2-Hydroxybernsteinsäure, seltener auch Apfelsäure) ist eine chemische Verbindung aus den Gruppen der Dicarbonsäuren und Hydroxycarbonsäuren, die als rechtsdrehende D- und als linksdrehende L-Äpfelsäure vorkommt. Die L-Form ist ein Zwischenprodukt im Citratzyklus. In der Natur ist L-Äpfelsäure meist in unreifen Früchten, wie etwa Äpfeln, Quitten, Weintrauben, Berberitzenbeeren, Vogelbeeren und Stachelbeeren, enthalten. Die Ester und Salze der Äpfelsäure heißen Malate (von lateinisch malum = Apfel, nicht zu verwechseln mit Maleaten, die Ester und Salze der Maleinsäure).

Historisches

L-Äpfelsäure wurde erstmals 1785 von Carl Wilhelm Scheele aus Apfelsaft isoliert und beschrieben. Antoine Lavoisier schlug 1787 den Namen acide malique, abgeleitet vom lateinischen Wort für Apfel, mālum vor.[5] Paul Walden konnte durch Synthese von L-Äpfelsäure und D-Äpfelsäure die Chiralität und die Konfigurationsumkehr am Kohlenstoffatom beweisen.

Eigenschaften

Die Äpfelsäure besitzt ein Stereozentrum und ist optisch aktiv. Unten dargestellt sind links die L-(−)-Äpfelsäure (nach CIP-Konvention: (S)-2-Hydroxybernsteinsäure) und rechts die D-(+)-Äpfelsäure (nach CIP-Konvention: (R)-2-Hydroxybernsteinsäure) in der Fischerprojektion. Die Stereozentren sind mit * gekennzeichnet.

Fischerprojektion

Wie alle Enantiomeren besitzen die L-Äpfelsäure und die D-Äpfelsäure, mit Ausnahme der Richtung des Drehwertes α die gleichen physikalischen Eigenschaften. Bei DL-Äpfelsäure, dem Racemat, unterscheiden sich die physikalischen Eigenschaften – wie Schmelzpunkt – allerdings deutlich von denen der reinen Enantiomeren L-Äpfelsäure und D-Äpfelsäure.

Verwendung

Als Lebensmittelzusatzstoff (E 296) darf sowohl die natürliche L-Form als auch die synthetische D-Form oder das Racemat verwendet werden. D-Apfelsäure kann beim Menschen durch Enzyme in L-Apfelsäure umgewandelt werden[6]. In der Praxis ist ihre Verwendung aufgrund des relativ hohen Preises eher gering. Stattdessen werden meist günstigere Alternativen, wie Citronensäure (E 330), Natriumbenzoat (E 211) oder auch Phosphorsäure (E 338) verwendet. Als Zusatzstoff in Kartoffelchips werden Natriummalat (E 350), Kaliummalat (E 351) und Calciummalat (E 352) verwendet. In der Medizin wird Kaliummalat bei Hypokaliämie als Infusionslösung eingesetzt, falls Kaliumchlorid wegen gleichzeitig bestehender Hyperchlorämie nicht eingesetzt werden kann.

Herstellung

Die L-Äpfelsäure und ihre Salze (Malate) werden nach einem biotechnologischen Verfahren, katalysiert durch das Enzym Fumarat-Hydratase, aus Fumarsäure (E 297) beziehungsweise als Stoffwechselprodukt von Bakterien und Pilzen (z. B. Brevibacterium, Corynebacterium, Escherichia, Microbacterium, Proteus, Pichia) gewonnen.[7] Die enantiospezifische Anlagerung von Wasser an Maleinsäure wird durch die Maleat-Hydratase katalysiert und führt zu D-Äpfelsäure.[7] Racemische Äpfelsäure kann durch die Bildung diastereomerer Salze mit einem geeigneten enantiomerenreinen Amin in L-Äpfelsäure und D-Äpfelsäure gespalten werden.

Weinbau

L-Äpfelsäure ist auch in Weintrauben enthalten. Ein niedriger Äpfelsäuregehalt gilt als Reifeparameter. Beim Ausbau des Weines kann gezielt oder auch spontan eine malolaktische Gärung eingeleitet werden. Milchsäurebakterien Oenococcus oeni verstoffwechseln unter Abgabe von CO2 und sonstigen Nebenprodukten die deutlich saurer schmeckende Äpfelsäure in die weniger sauer schmeckende Milchsäure.

Biologische Funktion

Die Äpfelsäure ist für den sauren Geschmack von Äpfeln verantwortlich, wobei viele andere Pflanzen ebenfalls Äpfelsäure enthalten. Wenn die Frucht reift, nimmt ihr Gehalt ab, wobei gleichzeitig der Zuckergehalt ansteigt. Dieser Effekt ist für die Fortpflanzung des Apfelbaums von essentieller Bedeutung, da der hohe Gehalt an Äpfelsäure in den Früchten verhindert, dass Tiere diese fressen und damit die noch unreifen Samen verteilen.[8]

Bei Pflanzen, welche einen Crassulaceen-Säurestoffwechsel (CAM) aufweisen, wird nachts Kohlenstoffdioxid durch Atemporen des Blattes aufgenommen und durch das Enzym PEP-Carboxylase fixiert. Durch eine weitere Reaktionskette entsteht dabei Malat. Malat ist das Salz der Äpfelsäure und wird nachts in den Vakuolen von CAM-Pflanzen in Form der Säure gespeichert. Am Tag wird CO2 wieder aus Äpfelsäure freigesetzt und direkt dem Calvin-Zyklus zugeführt. CAM-Pflanzen haben durch die zeitliche Trennung der Reaktion, auch diurnaler Säurerhythmus genannt, den Vorteil Stomata tagsüber zu schließen. Verdunstungsverlusten kann so entgegen gewirkt werden.[3]

Einzelnachweise

  1. 1,0 1,1 1,2 1,3 1,4 1,5 Eintrag zu CAS-Nr. 6915-15-7 in der GESTIS-Stoffdatenbank des IFA, abgerufen am 6. Januar 2008 (JavaScript erforderlich).
  2. 2,0 2,1 2,2 2,3 2,4 The Merck Index, 9. Auflage, 1976, ISBN 0-911910-26-3, S. 741.
  3. 3,0 3,1 3,2 3,3 Thieme Chemistry (Hrsg.): Eintrag zu CAM-Pflanzen im Römpp Online. Version 3.25. Georg Thieme Verlag, Stuttgart 2012, abgerufen am 25. Juli 2011.
  4. Malic acid bei ChemIDplus.
  5. William B. Jensen: The Origin of the Names Malic, Maleic, and Malonic Acid, in: J. Chem. Educ., 2007, 84, S. 924; doi:10.1021/ed084p924.
  6. http://www.zusatzstoffe-online.de/zusatzstoffe/92.e296_apfels%E4ure.html
  7. 7,0 7,1 Albert Gossauer: Struktur und Reaktivität der Biomoleküle, Verlag Helvetica Chimica Acta, 2006, ISBN 3-906390-29-2, S. 362–370.
  8. Chemie Oberstufe – Organische Chemie, 1. Auflage, Cornelsen Verlag, Berlin 2010, ISBN 978-3-06-011177-0.

Weblinks

Wiktionary Wiktionary: Äpfelsäure – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Siehe auch

Diese Artikel könnten dir auch gefallen

Die News der letzten 7 Tage

16.06.2021
Genetik
Genome aus ihren Puzzleteilen wieder zusammensetzen
Ein Forscherteam des Friedrich-Miescher-Labors für biologische Arbeitsgruppen hat eine neue Methode zur DNA-Sequenzierung entwickelt, die schnelles und effizientes Aufspüren von genetischer Information ermöglicht.
16.06.2021
Ökologie | Land-, Forst- und Viehwirtschaft
Kleingewässer in Agrarlandschaften stark mit Pestiziden belastet
Pestizide sichern die Erträge in der Landwirtschaft, indem sie schädliche Insekten, Pilze und Unkräuter bekämpfen.
13.06.2021
Anthropologie | Virologie | Immunologie
Wie Viren Immunzellen zu Trojanischen Pferden machen
Zytomegalieviren programmieren Fresszellen der Lunge so um, dass sie selbst Viren produzieren und diese in der Lunge verbreiten.
13.06.2021
Bionik und Biotechnologie | Land-, Forst- und Viehwirtschaft
Zuckerhirse: Süßes Versprechen für die Umwelt
Zuckerhirse lässt sich zur Herstellung von Biogas, Biokraftstoffen und neuen Polymeren nutzen, zudem kann sie dazu beitragen, Phosphatdünger zu ersetzen.
13.06.2021
Botanik | Physiologie
Todesduft der Pfeifenwinde lockt Sargfliegen in die Blüten
Ein internationales Pflanzenforscherteam hat in einer neuen Studie eine ungewöhnliche und bisher unbekannte Fortpflanzungsstrategie bei Pflanzen entdeckt.
11.06.2021
Ökologie | Biodiversität | Meeresbiologie
Untermieter auf Manganknollen: Schwämme sorgen für Artenreichtum
Tief auf dem Meeresgrund lagern wertvolle Rohstoffe – beispielsweise Knollen aus Mangan, Eisen, Kobalt und Kupfer.
11.06.2021
Morphologie
Das Metallgebiss des Borstenwurms
Metallatome sind für die bemerkenswerte Stabilität von Borstenwurm-Kiefern verantwortlich, zeigen Experimente der TU Wien.
11.06.2021
Paläontologie | Entwicklungsbiologie
Versteinert: 99 Millionen Jahre alte Geburt
Einem Forschungsteam ein außergewöhnlicher Fund gelungen: Sie fanden eine fossile weibliche Landschnecke, die gemeinsam mit ihren fünf Jungtieren in einem 99 Millionen Jahre alten Bernstein eingeschlossen wurde.