Helix-Turn-Helix-Motiv

Das Repressorprotein des Lamda-Bakteriophagen bindet mittels eines Helix-Turn-Helix-Motivs (in der Visualisierung grün) an DNA (In der Visualisierung blau und rot), nach PDB 1LMB.

Das Helix-Turn-Helix-Motiv (HTH) ist ein Sekundärstrukturelement in Proteinen. Es ist Bestandteil von DNA-bindenden Proteinen mit sequenzspezifischer DNA-Bindedomäne und setzt sich aus zwei α-Helices zusammen, die durch eine β-Schleife (auch β-turn) verbunden sind. Transkriptionsregulatoren in Bakterien enthalten oft ein HTH-Motiv. Das Protein gehört zur Homöodomäne.

Eine Helix bindet als Erkennungshelix sequenzspezifisch in der großen Furche der DNA und geht mehrere molekulare Wechselwirkungen (z.B.Wasserstoffbrücken, Ionenbindungen und hydrophobe Wechselwirkungen) zwischen Aminosäuren und den Basen der DNA ein, die andere Helix positioniert sich im rechten Winkel dazu und festigt somit die labile Bindung mit der DNA. Eine solche Anordnung dient also einerseits der Stabilität des Protein-DNA-Komplexes, andererseits wird die Spezifität der Reaktion erhöht, da beide Bindungspartner eine ganz bestimmte räumliche Struktur aufweisen müssen.

DNA-bindende Proteine dieser Art sind Homodimere oder Tetramere mit spiegelbildlich symmetrischen Anordnung der DNA-Bindedomäne. Die Zentren der Bindedomänen besitzen einen Abstand von 34 Å. Diese Länge entspricht der Ganghöhe der DNA, sodass die beiden Erkennungssequenzen in zwei aufeinander folgende Furchen der DNA passen. Die Bindungssequenzen sind Palindrome, d.h. sie sind aus zwei invertierten, spiegelbildlich angeordneten Sequenzen mit einem Abstand von 11 Basenpaaren aufgebaut, der ebenfalls der Ganghöhe der DNA entspricht. Dadurch liegen die beiden Erkennungssequenzen passgenau in aufeinander folgenden Furchen der DNA und werden so von den beiden Erkennungshelices eines dimeren Bindeproteins erkannt.

Quellen

Weblinks

Diese Artikel könnten dir auch gefallen

Die News der letzten 7 Tage

11.06.2021
Ökologie | Biodiversität | Meeresbiologie
Untermieter auf Manganknollen: Schwämme sorgen für Artenreichtum
Tief auf dem Meeresgrund lagern wertvolle Rohstoffe – beispielsweise Knollen aus Mangan, Eisen, Kobalt und Kupfer.
11.06.2021
Morphologie
Das Metallgebiss des Borstenwurms
Metallatome sind für die bemerkenswerte Stabilität von Borstenwurm-Kiefern verantwortlich, zeigen Experimente der TU Wien.
11.06.2021
Paläontologie | Entwicklungsbiologie
Versteinert: 99 Millionen Jahre alte Geburt
Einem Forschungsteam ein außergewöhnlicher Fund gelungen: Sie fanden eine fossile weibliche Landschnecke, die gemeinsam mit ihren fünf Jungtieren in einem 99 Millionen Jahre alten Bernstein eingeschlossen wurde.
09.06.2021
Genetik | Neurobiologie
Menschen-Gen macht Mäuse schlauer
Ein Gen, das nur beim Menschen vorkommt, führt bei Mäusen zu einem größeren Gehirn, erhöhter Flexibilität des Gedächtnisses und weniger Ängstlichkeit.
09.06.2021
Taxonomie
„Zombie-Frosch“ entdeckt
Senckenberg-Wissenschaftlerinnen haben mit einem internationalen Team drei neue Froscharten aus dem nördlichen Amazonasgebiet beschrieben.
09.06.2021
Klimawandel | Primatologie
Kein Platz für Menschenaffen
Der Klimawandel wird das Verbreitungsgebiet afrikanischer Menschenaffen in den nächsten 30 Jahren drastisch verkleinern.
07.06.2021
Ökologie | Klimawandel | Land-, Forst- und Viehwirtschaft
Art der Waldnutzung beeinflusst Lebensrhythmus der Wildpflanzen
Durch die Klimaerwärmung verschieben sich bei vielen Pflanzen die jahreszeitlichen Rhythmen, zum Beispiel die Blütezeit.
07.06.2021
Ethologie | Vogelkunde
Junge Seeadler bleiben länger im elterlichen Revier
Seeadler reagieren sensibel auf Störungen durch den Menschen, weshalb in unmittelbarer Umgebung der Horste forst- und landwirtschaftliche Nutzungen beschränkt sind.
07.06.2021
Ethologie | Vogelkunde
Vertrauen bei Rabenvögeln
Rabenvögel benutzen soziale Informationen, um sich vor Täuschung durch Artgenossen aus Nachbarterritorien zu schützen.