John Carew Eccles

Eccles lab.jpg

Sir John Carew Eccles AC (* 27. Januar 1903 in Melbourne; † 2. Mai 1997 in Locarno) war ein australischer Physiologe und Nobelpreisträger. Mit seinen Forschungen zur Reizweiterleitung von Nervenzellen trug er entscheidend dazu bei, die Vorgänge im menschlichen Gehirn aufzuklären. Für diese Forschungen erhielt er zusammen mit zwei Kollegen 1963 den Nobelpreis für Medizin und Physiologie.

Der tschechische Psychiater Cyril Höschl (links) und Sir John Carew Eccles (1993)

Leben und Wirken

John Carew Eccles wurde 1903 als Sohn des Lehrerehepaars William James Eccles und Mary Eccles (geb. Carew) in Melbourne geboren. Er studierte an der Universität Melbourne Medizin und schloss sein Studium dort 1925 ab. An der Universität Oxford setzte er seine Studien fort. Er forschte dort von 1927 bis 1931 am Lehrstuhl des Physiologen Charles Scott Sherrington (1857–1952) über den Ablauf von Reflexen und die Signalübertragung über den synaptischen Spalt und veröffentlichte während dieser Zeit gemeinsam mit Sherrington acht wissenschaftliche Artikel. 1929 erhielt Eccles den Doctor of Philosophy. Bis 1937 verblieb er in verschiedenen Positionen in Oxford.

Von 1937 bis 1966 arbeitete und lehrte Eccles an der University of Otago und der Australian National University. Danach forschte er am American Medical Association Institute for Biomedical Research in Chicago, wo biomedizinische Forschungen erfolgen. 1968 wurde Eccles Fakultätsmitglied am College der University at Buffalo, The State University of New York.

Während seiner Arbeiten in Oxford entdeckte Eccles 1951 zusammen mit seinen Kollegen, dem britischen Physiologen Alan Lloyd Hodgkin (1914–1998) und Andrew Fielding Huxley (1917–2012), den elektro-physiologischen Mechanismus der postsynaptischen Hemmung der Erregungsleitung: Der auf dem Zellfortsatz der motorischen Nervenzelle (Motoneuron) ankommende Impuls verursacht eine Erregung oder Hemmung, da an den Nervenfaserendigungen, den Synapsen, erregende oder hemmende chemische Substanzen, die so genannten Transmittersubstanzen, ausgeschüttet werden. Damit war die elektrische Erregungsübertragung zwischen den Nervenzellen an den Synapsen aufgeklärt. Für diese Arbeiten erhielt Eccles zusammen mit Hodgkin und Huxley im Jahre 1963 den Nobelpreis für Medizin und Physiologie. In der Begründung des Nobelpreiskomitees hieß es: „Für ihre Entdeckung über den Ionen-Mechanismus, der sich bei der Erregung und Hemmung in den peripheren und zentralen Bereichen der Nervenzellmembran abspielt.“

Wissenschaftliches Werk

Nach der Lektüre von Charles Scott Sherringtons Buch The Integrative Action of the Nervous System hatte Eccles bewusst Oxford als erste Station seiner Forschungslaufbahn gewählt, um im Labor Sherringtons mitarbeiten zu können. Als dieser 1932 den Nobelpreis erhielt, war Eccles an der Publikation des Buchs Reflex Activity of the Spinal Cord beteiligt, in dem Sherringtons Gruppe einen Überblick über ihre Studien des letzten Jahrzehnts gab. Als weitere Leitfiguren mit deutlichem Einfluss auf seine Forschung erwähnte Eccles in seinem 1964 erschienenen Buch The Physiology of Synapses Santiago Ramón y Cajal und Henry Hallett Dale.

Die erste Phase Eccles’ Forschung galt der Frage, wie Aktionspotentiale über den synaptischen Spalt hinweg weitergeleitet werden. Lange Zeit standen sich in dieser Frage zwei Theorien gegenüber: Während die eine, unter anderem angeregt durch Sherrington, davon ausging, dass chemische Botenstoffe an den Synapsen eine zentrale Rolle spielen, hielt die andere eine direkte elektrische Weiterleitung für wahrscheinlicher. Eccles hing lange Zeit der elektrischen Theorie an und sammelte in seinen Experimenten Daten, um diese zu unterstützen. Nachdem er im Mai 1945 eine wissenschaftstheoretische Vortragsreihe Karl Poppers gehört hatte, begann Eccles, seine Theorien zunehmend schärfer zu formulieren und Experimente zu ihrer Falsifizierung vorzuschlagen.

Dennoch interpretierte er seine folgenden Studien zunächst noch in voller Übereinstimmung mit den Vorhersagen der Theorie einer elektrischen Reizweiterleitung. 1949 musste er diese jedoch zum ersten Mal modifizieren und gestand nun eine chemische Vermittlung an der neuromuskulären Endplatte ein. Nachdem es ihm zusammen mit Kollegen in seinem Labor in Dunedin gelungen war, Potentialmessungen in Einzelzellen lebender Versuchstiere durchzuführen, fand er 1951 an einer inhibitorischen Synapse ein Potential, dessen Vorzeichen im Widerspruch zu seiner Theorie stand. Obwohl Eccles einer der schärfsten Kritiker der Theorie einer chemischen Vermittlung gewesen war, hatte er seine eigene Theorie somit als erster klar widerlegen können und akzeptierte die Wirksamkeit der chemischen Übertragung nun auch für das zentrale Nervensystem.

Philosophische Position

Eccles beschäftigte sich auch philosophisch mit dem Problem des Bewusstseins. Für ihn stand fest, dass nur der Mensch ein „Ich-Bewusstsein“ besitzt. Dieses sei von Zeugung an im Menschen angelegt und entwickle sich durch die Beziehung zur Außenwelt in den ersten Lebensjahren. Eccles lehnte einen strikten Materialismus, also die Position, das Bewusstsein lasse sich auf rein physikalische und chemische Prozesse zurückführen, ab. Er verglich etwa das Gehirn mit einem Computer und das „Ich“ mit dessen Programmierer. Seine Vorstellung von der Interaktion zwischen Gehirn und immateriellem Bewusstsein stellte Eccles in den 1970er Jahren zusammen mit dem Philosophen Karl Popper in dem Buch The Self and its Brain vor (deutsch: Das Ich und sein Gehirn). Er griff dabei auf Poppers Drei-Welten-Lehre zurück und behauptete, dass es bestimmte Regionen in der linken Gehirnhälfte gebe, die eine Interaktion der materiellen „Welt 1“ mit der mentalen „Welt 2“ ermöglichten.[1]

Vermutungen, wie diese Interaktion ablaufen könnte, stellte Eccles erst in hohem Alter an, angeregt von Ideen des deutschen Physikers und Philosophen Henry Margenau. Er postulierte, dass kleinste Prozesse auf Ebene der Quantenphysik hinreichend seien, um die Ausschüttung von Neurotransmittern zu beeinflussen und schloss, dass die Wirkung eines energie- und masselosen Geistes auf das Gehirn somit durch eine Beeinflussung der quantenmechanischen Wahrscheinlichkeitsfelder erklärbar werde. Kritiker weisen darauf hin, dass dieser Vorschlag das Erklärungsproblem des Interaktionismus nur verlagere, da nunmehr die Art der Interaktion zwischen Geist und Wahrscheinlichkeitsfeld ungeklärt sei.[2] Trotz eines enormen Respekts vor seinem wissenschaftlichen Lebenswerk wird Eccles’ Position zum Leib-Seele-Problem, aus der er auch Hoffnung auf ein Leben nach dem Tod schöpfte, heute zumeist als unplausibel betrachtet[3] und als Beispiel dafür gesehen, wie stark das Denken vieler Hirnforscher von religiösen Überzeugungen und von einem interaktionistischen Dualismus im Sinne René Descartes geprägt sei.[4]

Schriften

  • The Physiology of Synapses. Berlin 1964.
  • mit Karl Popper: Das Ich und sein Gehirn. München 1982, ISBN 3-492-21096-1.
  • Wie das Selbst sein Gehirn steuert. Berlin 1994.
  • Die Evolution des Gehirns – die Erschaffung des Selbst. München 2002, ISBN 3-492-23709-6.

Weitere Auszeichnungen

1962 wurde ihm die Royal Medal der Royal Society verliehen.

Weblinks

 Commons: John Eccles – Sammlung von Bildern, Videos und Audiodateien
Vorlage:Commonscat/WikiData/Difference

Einzelnachweise

  1. M. R. Bennett und P. M. S. Hacker: Philosophical Foundations of Neuroscience. Blackwell Publishing, 2003, ISBN 1-4051-0838-X, S. 50f.
  2. Rafael Ferber: Philosophische Grundbegriffe 2. Becksche Reihe, 2003, ISBN 3-406-49462-5, S. 108f.
  3. vgl. exemplarisch die Argumentation von M. R. Bennett und P. M. S. Hacker: Philosophical Foundations of Neuroscience. Blackwell Publishing, 2003, ISBN 1-4051-0838-X, S. 49–57
  4. vgl. die Zusammenfassung kritischer Stimmen in Peter Düweke: Kleine Geschichte der Hirnforschung. Von Descartes bis Eccles. Becksche Reihe, 2001, ISBN 3-406-45945-5, S. 174

Diese Artikel könnten dir auch gefallen

Die News der letzten 7 Tage

23.06.2021
Botanik | Physiologie | Biochemie
Wie kleine Moleküle Pflanzen bei ihrer Stressbewältigung helfen
Ein Team von Wissenschaftlerinnen hat in einer aktuellen Studie ein neuartiges regulatorisches kleines Molekül untersucht und beschrieben.
23.06.2021
Zytologie | Genetik | Biochemie
Flashmob im Zellkern
Der Zellkern ist weit mehr als eine Art Aufbewahrungs-Behälter für Chromosomen: In ihm sitzt auch die komplexe Maschinerie, die Abschriften der gerade benötigten Gene herstellt und in die Zelle entlässt.
23.06.2021
Anthropologie | Primatologie
Dem Affen in die Augen geschaut
Das Weiße in unserem Auge ist etwas Besonderes, denn die Lederhaut ist nicht pigmentiert, weshalb wir gut verfolgen können, wohin unser Gegenüber schaut.
23.06.2021
Physiologie | Ökologie | Biodiversität
Der Duft macht’s
Pflanzliche Inzucht mindert die Attraktivität für Bestäuber, das zeigt ein Forschungsteam am Beispiel der Weißen Lichtnelke.
23.06.2021
Anthropologie | Physiologie | Primatologie
Das Alter lässt sich nicht betrügen
Die Lebenserwartung in Primatenpopulationen wird durch die Überlebensrate der Jüngeren bestimmt.
23.06.2021
Botanik | Physiologie | Klimawandel
Warum Bäume nachts wachsen
Es ist ein weit verbreiteter Irrtum, dass Bäume mehrheitlich tagsüber wachsen.
21.06.2021
Neurobiologie
Wählerische Nervenzellen
Der visuelle Thalamus ist klassischerweise dafür bekannt, die von der Netzhaut kommenden visuellen Reize an die Großhirnrinde weiterzuleiten.
21.06.2021
Botanik | Genetik | Klimawandel
Gene für Dürreresistenz in Buchen: Hitzesommer überleben oder austrocknen?
Forscherinnen identifizieren Gene für Dürreresistenz in Buchen, aber nicht jeder Baum hat das genetische Rüstzeug für einen Klimawandel.
21.06.2021
Anthropologie | Neurobiologie
Mimik-Erkennung: Warum das Gehirn dem Computer (noch) überlegen ist
Die Corona-Maskenpflicht macht uns derzeit bewusst: Mimik ist eines unserer wichtigsten Kommunikationssignale.
20.06.2021
Physiologie | Paläontologie
Kleiner Elefant hörte tiefe Töne
Der ausgestorbene Zwergelefant Palaeoloxodon tiliensis von der griechischen Insel Tilos besaß offenbar ein ähnliches Hörspektrum wie seine großen, heute lebenden Verwandten.
20.06.2021
Biodiversität | Insektenkunde
In Deutschland Gewinner und Verlierer: Libellen
In den letzten 35 Jahres hat sich die Verteilung der Libellenarten in Deutschland stark verändert.
18.06.2021
Ethologie | Insektenkunde
Die komplexe Organisation einer Ameisenkolonie
Eine vom Schweizerischen Nationalfonds unterstützte Studie über räuberische Ameisen erklärt, wie kleine Unterschiede zwischen Einzeltieren die kollektive Organisation der Kolonie verändern.
18.06.2021
Ethologie | Primatologie
Schimpansen-Waisen erholen sich vom Verlust der Mutter
Chronischer Stress könnte ein Grund dafür sein, warum manche Tierwaisen eine kürzere Lebenserwartung haben und weniger Nachkommen bekommen.
18.06.2021
Ökologie | Insektenkunde
Stickstoffüberschuss gefährdet Schmetterlinge
Stickstoff aus Landwirtschaft, Verkehrsabgasen und Industrie bringt Schmetterlinge in der Schweiz in Bedrängnis.
18.06.2021
Insektenkunde | Entwicklungsbiologie
Steinfliegen: Jugend beeinflusst Erwachsenenleben
Die Metamorphose führt bei Insekten meist zu völlig verschieden aussehenden Larven- und Erwachsenenstadien: Schmetterlinge unterscheiden sich etwa drastisch von ihren Jungstadien, den Raupen.
18.06.2021
Ökologie | Vogelkunde
Dramatische Veränderung der Brutvogelgemeinschaft
Im Bonner Stadtteil Dottendorf hat die Zahl der Brutvogelarten in den vergangenen 50 Jahren deutlich abgenommen.