Kolmogorov-Gleichung
- Seiten mit Math-Fehlern
- Seiten mit Math-Renderingfehlern
- Partielle Differentialgleichungen
- Theoretische Biologie
- Theoretische Ökologie
Die Kolmogorov-Petrovsky-Piscounov-Gleichung (KPP-Gleichung, oder auch Fishers-Gleichung) ist eine partielle Differentialgleichung der Form:
- $ \partial _{t}u=\partial _{x}^{2}u+u-u^{2} $
Sie ist eine semilineare parabolische Gleichung zweiter Ordnung. Die Gleichung wird verwendet, um verschiedene Vorgänge in der Natur zu modellieren. Sie wird beispielsweise bei der Populationsdynamik und der Beschreibung von chemischen Reaktionen eingesetzt.
Die Differentialgleichung besteht aus einem Diffusionsterm Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \partial^2_x u und einem nichtlinearen Reaktionsterm Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): u - u^2 .
Verwendet man eine ortsunabhängige Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): u(x,t) = f(t) , so erhält man die gewöhnliche Differentialgleichung
- $ \partial _{t}f=f-f^{2} $
An dieser kann man erkennen, dass mit dem Modell ein exponentielles Wachstum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \partial_t f = f modelliert wird, das jedoch einen Sättigungsterm Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): -f^2 enthält, der z. B. bei chemischen Reaktionen die Sättigung der Konzentration oder bei der Populationsdynamik für die begrenzte Nahrungsversorgung steht.
Reaktionsfronten
Verwendet man die Gleichung zur Modellierung einer örtlich lokalisiert startenden Reaktion, so ist klar, dass sich eine Reaktionsfront ausbildet. Diese besitzt, wie man zeigen kann, eine minimale Ausbreitungsgeschwindigkeit.
Verwendet man den für Wellen üblichen Ansatz
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): u(x,t) = f(x - vt) =\, f(w)
so erhält man nach Einsetzen die gewöhnliche Differentialgleichung zweiter Ordnung
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \partial_w^2 f + v\partial_w f + f - f^2 = 0
Nach Linearisierung und unter der Annahme, dass die "Konzentration" f nur Werte zwischen 0 und 1 annehmen kann, erhält man die Gleichung für die Eigenwerte
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \lambda_{1,2} = \frac{-v \pm \sqrt{v^2 - 4}}{2}
Da diese für stabile Wellen reell sein müssen, muss $ v\geq 2 $ gelten.
Verallgemeinerungen
Die Gleichung kann noch verallgemeinert werden zu:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \partial_t u = \partial^2_x u + (1 - u)u^m
mit einer positiven ganzen Zahl m.
Siehe auch
- Nernst-Planck-Gleichung
- Reaktionsdiffusionsgleichung