Hydrothermales Catering



Bio-News vom 25.04.2022

Heiße Quellen sind unabhängig von der Wassertiefe, in denen sie vorkommen, ein extremer Lebensraum. Die hier lebenden mikrobiellen Gemeinschaften passen sich an dieses Umfeld an und nutzen seine Energiequelle – eine Art hydrothermales Catering.

Hydrothermalquellen in der Tiefsee gelten als Oasen des Lebens. Hier tummeln sich viele Lebewesen, die von den nährstoffreichen Fluiden profitieren – sie sind oft die einzige Energiequelle. Hydrothermalsysteme existieren aber nicht nur in der Tiefsee, sondern auch im küstennahen Flachwasser, dort wo es submarine vulkanische Aktivität gibt. Wie in der Tiefsee steigt auch hier heißes Wasser durch das Sediment nach oben in die Wassersäule, dabei lösen sich Stoffe aus dem Erdinneren und reichern sich im Wasser an. Hydrothermalsysteme in Küstennähe existieren zum Beispiel vor der griechischen Insel Milos, dem Untersuchungsgebiet der Forschenden. Hier brauchen die Forschenden keine aufwändige Technik wie Tauchroboter, um Proben zu nehmen oder Observatorien zu installieren; das Untersuchungsgebiet liegt in Schnorcheldistanz von der Küstenlinie.


Weiße Bakterienmatten am Meeresboden zeigen, wo Fluide durch das Sediment nach oben sickern.

Publikation:


Stefan M. Sievert, Solveig I. Bühring, Lara K. Gulmann, Kai-Uwe Hinrichs, Petra Pop Ristova, Gonzalo V. Gomez-Saez
Fluid flow stimulates chemoautotrophy in hydrothermally influenced coastal sediments

Communications Earth & Environment (2022)

DOI: 10.1038/s43247-022-00426-5



Mikroben können hier den Prozess der Chemosynthese nutzen, um Energie aus anorganischen chemischen Verbindungen zu gewinnen und Kohlenstoffdioxid in Biomasse umzuwandeln. An heißen Quellen in der Tiefsee ist das die Grundlage der Symbiosen zwischen Bakterien und Tieren.

Um die Mikroorganismen und ihre chemischen Stoffwechselmechanismen zu untersuchen, haben Solveig Bühring vom MARUM, Stefan Sievert von der Woods Hole Oceanographic Institution (WHOI) in den USA und ihr Team versucht, die Lebensbedingungen für die Mikroorganismen im Labor nachzustellen – mit mäßigem Erfolg. Die Stoffwechselraten waren zu niedrig, so dass das Team stattdessen Inkubatoren direkt am Meeresboden installiert hat, um die mikrobiellen Gemeinschaften mit der natürlichen hydrothermalen Fluidzirkulation untersuchen zu können. Dafür haben die Forschenden Inkubatoren genutzt, die eigentlich in vielen hundert Metern Wassertiefe von Tauchrobotern am Ozeanboden installiert werden. Damit etablieren Sievert, Bühring und ihre Co-Autorinnen und Autoren ein neues Verfahren, um Flachwassersysteme und ihre Mikrobiologie zu untersuchen.


Die Bakterienmatten vor der Küste Milos‘ sind auch aus der Luft gut zu erkennen.

„Anstatt Tauchrobotern konnten wir selbst unsere Versuche direkt im Sediment durchführen. Dazu haben wir erst die Inkubatoren ausgesetzt – eine Art Rohr, das an beiden Enden offen ist. Sie wurden zu einer Wechselzone zwischen dem sauerstoffreichen Meerwasser und den sulfidhaltigen hydrothermalen Fluiden, die von unten nach oben strömen“, erklärt Stefan Sievert. Mittels der Inkubatoren ins Sediment injiziertes, markiertes Kohlenstoffdioxid und dessen Aufnahme in mikrobielle Fettsäuren, in Kombination mit DNA- und RNA-Methoden, zeigt, wer die Hauptakteure der Kohlenstofffixierung innerhalb der mikrobiellen Gemeinschaft sind. Außerdem wurde untersucht, wie sich die mikrobiellen Gemeinschaften unter neuen Bedingungen verändern – zum Beispiel, wenn die Zirkulation hydrothermaler Fluide gestoppt wird.

„Wir haben bemerkt, dass die Gemeinschaft extrem dynamisch ist: Sobald die Zirkulation der hydrothermalen Fluide unterbrochen wurde, sank die Kohlenstofffixierungsrate und die mikrobielle Zusammensetzung veränderte sich hin zu einer Gemeinschaft, die regulären, nicht-hydrothermal beeinflussten Küstensedimenten ähnelt. Diese Anpassung trat innerhalb von Stunden ein, das hat uns sehr überrascht“, sagt Bühring.

„Unsere Arbeit ist insofern relevant, weil gerade Flachwassersysteme auch die Küsten und damit – zum Beispiel in Milos – den Lebensraum von Menschen beeinflussen“, fasst Solveig Bühring zusammen. Die Fluide enthalten für den Menschen potentiell gefährliche Stoffe, wie Schwefelwasserstoff, welcher durch die chemosynthetische Aktivität der Mikroorganismen in harmlosen Schwefel und Sulfat umgewandelt wird. Die Ergebnisse von Sievert und Bühring sind also ein Baustein zum Verständnis der Funktion chemosynthetischer Meeressysteme, ihrem Einfluss auf die Umgebung und den globalen Kohlenstoffkreislauf.

Generell ist Bühring und ihren Kolleginnen und Kollegen daran gelegen, Mikroorganismen besser zu verstehen. Warum das wichtig ist, zeigt ein ganz aktuelles Beispiel, bei dem Kenntnisse aus der Mikrobiologie eingesetzt werden: Das Verfahren bei PCR-Tests in der Corona-Pandemie etwa basiert auf hitzestabilen Enzymen, die aus Mikroorganismen stammen, die wiederum aus Flachwasserhydrothermalsystemen isoliert wurden.

Im kommenden Jahr werden Bühring und ihre Kolleginnen und Kollegen weiter an den Hydrothermalsystemen vor Milos arbeiten. Für Sommer 2023 ist eine Expedition mit dem Forschungsschiff METEOR geplant. Ziel ist es, Quellen in unterschiedlichen Wassertiefen zu finden und Wissenslücken zwischen Hydrothermalsystemen an Küsten und in der Tiefsee zu schließen.



Diese Newsmeldung wurde mit Material des MARUM - Zentrums für Marine Umweltwissenschaften an der Universität Bremen via Informationsdienst Wissenschaft erstellt.


warte
warte
warte
warte
warte
warte
warte
warte
warte
warte