2-Arachidonylglycerol

Strukturformel
Struktur von 2-Arachidonylglycerol
Allgemeines
Name 2-Arachidonylglycerol
Andere Namen
  • 1,3-Dihydroxypropan-2-yl- (5Z,8Z,11Z,14Z)-eicosa-5,8,11,14-tetraensäure
  • 2-Hydroxy-1-(hydroxymethyl) ethylester- 5Z,8Z,11Z,14Z-eicosatetraensäure
  • 2-AG
  • 2-Ara-Gl
Summenformel C23H38O4
Kurzbeschreibung

gelbe Flüssigkeit[1]

Externe Identifikatoren/Datenbanken
CAS-Nummer 53847-30-6
Wikidata [[:d:Lua-Fehler in Modul:Wikidata, Zeile 865: attempt to index field 'wikibase' (a nil value)|Lua-Fehler in Modul:Wikidata, Zeile 865: attempt to index field 'wikibase' (a nil value)]]
Eigenschaften
Molare Masse 378,55 g·mol−1
Aggregatzustand

flüssig[1]

Löslichkeit
  • löslich in Ethanol und DMSO[1]
  • löslich in Acetonitril[2]
Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung
keine Einstufung verfügbar[3]
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.

2-Arachidonylglycerol (2-AG), ist ein Endocannabinoid, das die Cannabinoid-Rezeptoren CB1 und CB2 aktiviert. Es ist der Ester aus Arachidonsäure und Glycerol. In Ratten wurde es im Gehirn, Leber, Lunge, Milz und Niere nachgewiesen.[4]

Wirkung

Es aktiviert die beiden bekannten Cannabinoid-Rezeptoren. Wird es Mäusen intravenös verabreicht, so entwickeln sie dieselben Symptome wie nach Gabe von THC (verminderte Schmerzempfindung, Immobilität, verringerte spontane Aktivität, gesenkte Rektaltemperatur). Es stimuliert das Knochenwachstum durch indirekte Hemmung des adrenergen System.[5] und Aktivierung von CB2-Rezeptoren[6] Durch Aktivierung von CB1-Rezeptoren ist es neuroprotektiv im Tiermodell nach Gehirnverletzungen.[7]

Pharmakologie

Im Gegensatz zu Anandamid ist es ein voller Agonist, es wird deshalb angenommen, dass 2-AG der endogene Ligand der Cannabinoid-Rezeptoren ist.[8] Es wird durch das Enzym Monoglycerolipase (MGL) in Arachidonsäure und Glycerol gespalten.[9]

Geschichte

Die Arbeitsgruppe von Raphael Mechoulam an der Hebräischen Universität von Jerusalem in Israel publizierte 1995 die Entdeckung eines Stoffes, der aus dem Hundedarm isoliert wurde und an Cannabinoid-Rezeptoren bindet.[10] Er erwies sich als identisch mit synthetischem 2-AG.

Struktur

Trotz der chemischen Unterschiede nimmt es eine sehr ähnliche räumliche Konformation wie Tetrahydrocannabinol ein.[11]

Weblinks

Einzelnachweise

  1. 1,0 1,1 1,2 1,3 Tocris Bioscience: 2-Arachidonylglycerol MSDS
  2. Datenblatt 2-Arachidonyl glycerol, acetonitrile solution, ~10 mg/mL, ≥98% (HPLC) bei Sigma-Aldrich (PDF).Vorlage:Sigma-Aldrich/Abruf nicht angegeben
  3. Dieser Stoff wurde in Bezug auf seine Gefährlichkeit entweder noch nicht eingestuft oder eine verlässliche und zitierfähige Quelle hierzu wurde noch nicht gefunden.
  4. Kondo S, Kondo H, Nakane S, et al: 2-Arachidonoylglycerol, an endogenous cannabinoid receptor agonist: identification as one of the major species of monoacylglycerols in various rat tissues, and evidence for its generation through CA2+-dependent and -independent mechanisms. In: FEBS Lett. 429. Jahrgang, Nr. 2, 1998, S. 152–6, PMID 9650580.
  5. Tam J, Trembovler V, Di Marzo V, et al: The cannabinoid CB1 receptor regulates bone formation by modulating adrenergic signaling. 2007, doi:10.1096/fj.06-7957com, PMID 17704191.Vorlage:Cite book/Meldung
  6. Ofek O, Karsak M, Leclerc N, et al: Peripheral cannabinoid receptor, CB2, regulates bone mass. In: Proc. Natl. Acad. Sci. USA. 103. Jahrgang, Nr. 3, 2006, S. 696–701, doi:10.1073/pnas.0504187103, PMID 16407142.
  7. Panikashvili D, Simeonidou C, Ben-Shabat S, et al: An endogenous cannabinoid (2-AG) is neuroprotective after brain injury. In: Nature. 413. Jahrgang, Nr. 6855, 2001, S. 527–31, doi:10.1038/35097089, PMID 11586361.
  8. Sugiura T, Kodaka T, Nakane S, et al: Evidence that the cannabinoid CB1 receptor is a 2-arachidonoylglycerol receptor. Structure-activity relationship of 2-arachidonoylglycerol, ether-linked analogues, and related compounds. In: J. Biol. Chem. 274. Jahrgang, Nr. 5, 1999, S. 2794–801, PMID 9915812.
  9. Dinh TP, Carpenter D, Leslie FM, et al: Brain monoglyceride lipase participating in endocannabinoid inactivation. In: Proc. Natl. Acad. Sci. U.S.A. 99. Jahrgang, Nr. 16, 2002, S. 10819–24, doi:10.1073/pnas.152334899, PMID 12136125.
  10. Mechoulam R, Ben-Shabat S, Hanus L, et al: Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. In: Biochem. Pharmacol. 50. Jahrgang, Nr. 1, 1995, S. 83–90,, PMID 7605349.
  11. Barnett-Norris J, Hurst DP, Lynch DL, Guarnieri F, Makriyannis A, Reggio PH: Conformational memories and the endocannabinoid binding site at the cannabinoid CB1 receptor. In: J. Med. Chem. 45. Jahrgang, Nr. 17, 2002, S. 3649–59, PMID 12166938.

Die News der letzten Tage

29.03.2023
Entwicklungsbiologie | Neurobiologie | Zytologie
Wenn Nervenzellen hungern
Die Entwicklung unseres Gehirns benötigt die richtigen Nährstoffe zur richtigen Zeit. Diese liefern die notwendige Energie für zelluläre Prozesse, die der Gehirnbildung zugrunde liegen. Was passiert aber, wenn diese Stoffe nicht verfügbar sind?
29.03.2023
Neurobiologie
Anders als gedacht: Gehirn verarbeitet Seheindrücke auch rückwärts
Warten wir auf der Straße auf jemanden, mit dem wir verabredet sind, erkennen wir die Person meistens oft schon von Weitem zwischen anderen Menschen.
28.03.2023
Mikrobiologie | Physiologie | Vogelkunde
Darmflora von Seevögeln durch Mikroplastik verändert
Je mehr Mikroplastik wilde Seevögel wie Eissturmvogel und Corysturmtaucher mit der Nahrung aufnehmen, desto stärker verändert sich die mikrobielle Vielfalt im Darm.
28.03.2023
Klimawandel | Ökologie
Frost im Frühling: Wie Bäume damit zurechtkommen
Durch den Klimawandel treiben viele Laubbäume früher aus, doch das Risiko von Spätfrösten im Frühjahr bleibt hoch und extreme Trockenphasen werden häufiger.
28.03.2023
Klimawandel | Primatologie
Klimawandel bedroht Lemuren auf Madagaskar
Mausmaki: Auch vermeintlich anpassungsfähige Säugetierarten haben ein erhöhtes Aussterberisiko.
23.03.2023
Genetik | Physiologie
Gene für Augenfarbe wichtig für eine gesunde Netzhaut
Forscher untersuchten, wie vier Gene der Fruchtfliege Drosophila, die für die Farbgebung der Augen verantwortlich sind, auch für die Gesundheit des Netzhautgewebes essentiell sind.
23.03.2023
Genetik | Physiologie
An der „Auferstehung“ sind viele Gene beteiligt
Manche Pflanzen können Monate ohne Wasser überleben, um dann nach einem kurzen Regenguss wieder zu ergrünen.
22.03.2023
Physiologie
Startschuß zur optischen Wahrnehmung
Forschende haben den molekularen Vorgang entschlüsselt, der als Allererstes im Auge abläuft, wenn Licht auf die Netzhaut trifft.
22.03.2023
Neurobiologie
Wettbewerb zwischen den Gehirnhälften im Schlaf
Der Mensch ist beidseitig symmetrisch: unser Gehirn besteht aus zwei Hälften, den so genannten Hemisphären.
22.03.2023
Neurobiologie | Physiologie
Warum wir von Schokoriegeln und Co. nicht die Finger lassen können
Schokoriegel, Chips und Pommes - warum können wir sie im Supermarkt nicht einfach links liegen lassen?
22.03.2023
Biochemie | Genetik | Zytologie
Aus Perspektive eines Ingenieurs ist Biologie chaotisch und unvollkommen
Der Vorteil von Redundanz in biologischen Systemen.
21.03.2023
Paläontologie
Neue Augen bei Trilobiten entdeckt
Wissenschaftler*innen der Universitäten Köln und Edinburgh entdecken bisher übersehene Augen bei Trilobiten.
21.03.2023
Bionik, Biotechnologie und Biophysik | Bioinformatik
Molekularbiologie trifft auf Quantenphysik
Biologische Systeme sind hochkomplex: Sie werden vor allem über genregulatorische Netzwerke gesteuert, in denen Gene, Proteine und RNA auf vielfältige Art interagieren.