Hepcidin

Hepcidin-20

Hepcidin-20

Bänder-/Kugelmodell nach PDB 1M4F
Eigenschaften des menschlichen Proteins
Masse/Länge Primärstruktur 20 Aminosäuren
Präkursor Prohepcidin (60 AS)
Bezeichner
Gen-Name HAMP
Externe IDs OMIM: 606464 UniProtP81172
Vorkommen
Homologie-Familie Hepcidin
Übergeordnetes Taxon Eutheria

Hepcidin heißen zwei Proteine mit 20 und 25 Aminosäuren in höheren Säugetieren. Hepcidin-20 spielt eine wichtige Rolle in der Regulation des Eisen-Stoffwechsels, indem es die Eisenaufnahme über den Darm, über die Plazenta und die Freisetzung von Eisen aus dem retikuloendothelialen System (RES) bremst . Zunächst wurde Hepcidin-20 als ein Peptid beschrieben, welches bei der Mikrobenabwehr beteiligt ist. Daher stammt auch der Name hepatic bactericidal protein. Ein Hepcidinmangel ist bei autosomal-rezessiven Formen der Hämochromatose (Typ 2B) beteiligt, die durch eine Mutation im HFE-Gen entsteht.[1]

Bildung

Der Körper produziert die Hepcidine aus einer Vorstufe, dem Pro-Hepcidin, in der Leber. Pro-Hepcidin wird durch das HAMP-Gen (HFE-2B) codiert. Es wird vermehrt gebildet, wenn Eisen und Sauerstoff (bei guter Eisenversorgung und gut vorhandenem Sauerstofftransport in die Gewebe) und Interleukin-6 (bei Entzündungen) vermehrt vorhanden sind.

Wirkungen

Hepcidin-20 bindet z. B. in Dünndarmmucosazellen und in Makrophagen an Ferroportin, welches normalerweise Eisen aus dem Zellinneren heraustransportiert. Ist Hepcidin an Ferroportin gebunden, können diese Zellen kein Eisen mehr exportieren und im Blut an das Transportprotein Transferrin abgeben. Dünndarmmucosazellen können erst in den letzten zwei Tagen, bevor sie in den Darm abgestoßen werden, ihr aufgenommenes Eisen über das Ferroportin wieder exportieren; wenn viel Ferroportin durch Hepcidin inaktiviert wird, geht das in diese Zellen aufgenommene Eisen mit der Zellabschilferung wieder über den Stuhl verloren. So regelt Hepcidin die Eisenaufnahme im Darm herunter. Hepcidin spielt auch eine wichtige Rolle bei der Veränderung des Eisenstoffwechsels im Rahmen chronischer Entzündungen. Das bei solchen Entzündungen erhöhte Interleukin-6 führt zu einer Erhöhung des Hepcidinspiegels. Dieses hält dann das Eisen in den Makrophagen, die in der Milz alte Erythrozyten abbauen, und verhindert ein promptes Recycling, was dann zu einer entzündungsbedingten Anämie führt.[2]

Säugetiere können Eisen nicht aktiv ausscheiden. Der Eisenhaushalt wird somit im Wesentlichen über die Eisenaufnahme durch das Hepcidin reguliert.[3]

Ein Hepcidin-Agonist kann durch die Hemmung des Ferroportin-gesteuerten Eisentransports aus der Darmzelle bei Eisenüberladung eingesetzt werden, wie bei einer Hämochromatose oder auch im Rahmen sekundär erhöhter Eisenmengen im Körper, etwa bei kongenitalen Anämien wie der Thalassämie oder der sideroblastischen Anämie. Ein erster Hepcidin-Agonist in Form eines synthetischen Proteins, das den ersten neun Aminosäuren des Hepcidins ähnelt, aber soweit modifiziert wurde, dass es oral aufgenommen werden kann, bewährte sich als "Minihepcidin" in ersten Versuchen, senkte effektiv die Blut-Eisenkonzentration und verhinderte eine Eisen-Einlagerung in der Leber . Ebenso ist ein Hepcidin-Antagonist zur Behandlung von Anämien im Rahmen chronischer Krankheiten und bei der seltenen Eisenresistenten Eisenmangelanämie, der eine erhöhte Hepcidin-Bildung zugrunde liegt, in der Entwicklung [4].

Laborwerte

Hepcidin und sein Vorläufer das pro-Hepcidin kann im Blut und Urin nachgewiesen werden.

Siehe auch

Einzelnachweise

  1. UniProt P81172
  2. Ganz T, Nemeth E: Iron imports. IV. Hepcidin and regulation of body iron metabolism. In: Am. J. Physiol. Gastrointest. Liver Physiol. 290. Jahrgang, Nr. 2, Februar 2006, S. G199–203, doi:10.1152/ajpgi.00412.2005, PMID 16407589.
  3. Vaulont S, Lou DQ, Viatte L, Kahn A: Of mice and men: the iron age. In: J. Clin. Invest. 115. Jahrgang, Nr. 8, August 2005, S. 2079–82, doi:10.1172/JCI25642, PMID 16075054, PMC 1180554 (freier Volltext).
  4. N. C. Andrews: Closing the iron gate. N Engl J Med 2012; 366: 376-377

Weblinks

Die News der letzten Tage

02.02.2023
Anthropologie | Ökologie | Paläontologie
Erster Beweis für Elefantenjagd durch den frühen Neandertaler
Untersuchung von Funden in Neumark-Nord bei Halle erbringen den ersten eindeutigen Beweis für die Jagd von Elefanten in der menschlichen Evolution und neue Erkenntnisse über die Lebensweise der Neandertaler.
02.02.2023
Biochemie | Neurobiologie
Untersuchung von Prozessen im Kleinhirn
An verschiedenen Erkrankungen, die das motorische Lernen betreffen, sind Prozesse im Kleinhirn beteiligt.
01.02.2023
Biodiversität | Land-, Forst-, Fisch- und Viehwirtschaft | Ökologie
Wovon die Widerstandskraft von Savannen abhängt
Extreme klimatische Ereignisse gefährden zunehmend Savannen weltweit.
01.02.2023
Biochemie | Mikrobiologie
Proteinvielfalt in Bakterien
Als Proteinfabrik der Zelle hat das Ribosom die Aufgabe, bestimmte Teile der mRNA in ein Eiweiß zu übersetzen: Um zu erkennen, wo es damit anfangen und wieder aufhören muss, braucht es so genannte Start- und Stopcodons.
30.01.2023
Ökologie | Physiologie
Ernährungsumstellung: Die Kreativität der fleischfressenden Pflanzen
In tropischen Gebirgen nimmt die Zahl der Insekten mit zunehmender Höhe ab.
27.01.2023
Land-, Forst-, Fisch- und Viehwirtschaft | Neobiota | Ökologie
Auswirkungen von fremden Baumarten auf die biologische Vielfalt
Nicht-einheimische Waldbaumarten können die heimische Artenvielfalt verringern, wenn sie in einheitlichen Beständen angepflanzt sind.
27.01.2023
Biochemie | Botanik | Physiologie
Wie stellen Pflanzen scharfe Substanzen her?
Wissenschaftler*innen haben das entscheidende Enzym gefunden, das den Früchten der Pfefferpflanze (lat Piper nigrum) zu ihrer charakteristischen Schärfe verhilft.