Genmutation verantwortlich für Trennung der Gehirnhälften



Bio-News vom 23.10.2019

Eine Genmutation ist dafür verantwortlich, dass die beiden Gehirnhälften von Fruchtfliegen getrennt bleiben und der Informationsaustausch zwischen rechter und linker Gehirnhälfte nicht funktioniert. Das hat eine Arbeitsgruppe um Rashmit Kaur und Thomas Hummel vom Department für Neurobiologie der Universität Wien in einer aktuellen Studie herausgefunden.

Eigentlich haben wir zwei Gehirne in unserem Kopf, jeweils eines auf der rechten und eines auf der linken Seite. Diese beiden strukturell identischen Gehirnhälften arbeiten aber so eng zusammen, dass neuronale Information nicht nur im gesamten Gehirn repräsentiert ist, sondern auch in unterschiedlicher Weise in den beiden Hälften analysiert werden kann.


Das Gehirn von Drosophila besitzt ca. 100.000 Nervenzellen, die in komplexen Netzwerken miteinander verschaltet sind.

Publikation:


R. Kaur; M. Surala; S. Hoger; N. Grössmann, A. Grimm; L. Timaeus; W. Kallina; T. Hummel
Pioneer interneurons instruct bilaterality in the Drosophila olfactory sensory map

Science Advances

DOI: 10.1126/sciadv.aaw5537



Entscheidend für diesen raschen bilateralen Datentransfer sind hunderte Millionen von Nervenverbindungen, die in dicken Kabeln – den sogenannten Kommissuren – die beiden Gehirnhälften verbinden. Viele neuronale Erkrankungen des Menschen gehen auf eine geringere Ausbildung oder gar den Verlust dieser Kommissuren zurück. Die zellulären und molekularen Ursachen hierfür sind aber weitgehend unbekannt.

Die Arbeitsgruppe um Thomas Hummel am Department für Neurobiologie der Universität Wien nutzt die Fruchtfliege Drosophila melanogaster, um die genetische Regulation der Gehirnentwicklung besser zu verstehen. Wie beim Menschen bilden sich auch bei Drosophila eine Vielzahl von Kommissuren zum Informationsaustausch zwischen rechter und linker Gehirnhälfte.

Brückenschlag zwischen Links und Rechts durch Gen möglich

Die Forscher untersuchten die Funktion von verwandten Genen, die beim Menschen zu einer Störung der Kommissurenbildung führen und auch in der Entwicklung des Fliegengehirns von Bedeutung sind. "Mit modernen Analysemethoden zur gezielten Manipulation einzelner Nervenzellen konnten wir die Wirkungsweise des neuronalen Oberflächenproteins L1CAM klären. Mutationen in diesem Protein unterbrechen bei der Fliege das Wachstum der so genannten 'Pionier'-Kommissuren, die eine erste zelluläre Brücke zwischen den beiden getrennten Gehirnhälften bilden", erklärt Rashmit Kaur, die auch ihre Doktorarbeit diesem Thema gewidmet hat. Durch den Verlust der embryonalen Neuronenbrücke können auch alle nachfolgenden Kommissuren den "Sprung" auf die andere Gehirnseite nicht schaffen und beide Hemisphären bleiben in der Folge im erwachsenen Tier getrennt.

Besonders interessant war für die Forscherinnen und Forscher, dass das menschliche L1CAM-Gen den kommissuralen Defekt im Fliegengehirn reparieren kann, was auf einen vergleichbaren Entwicklungsprozess bei Fliege und Mensch hindeutet. "Wir wollen nun in weiterführenden Studien versuchen, die genauen Veränderungen bei neuronalen Erkrankungen des Menschen besser zu verstehen und damit spannende Einblicke in die Evolution von einfachen zu komplexen Nervensystemen gewinnen", so Thomas Hummel abschließend.


Diese Newsmeldung wurde mit Material der Universität Wien via Informationsdienst Wissenschaft erstellt.

Die News der letzten 7 Tage 24 Meldungen

Mehr zu den Themen


warte
warte
warte
warte
warte
warte
warte
warte
warte
warte