Honigbienen stechen in größeren Gruppen seltener



Bio-News vom 16.09.2022

Stechen oder nicht stechen? Für die Stechbereitschaft von Bienen spielt ein Alarmpheromon eine entscheidende Rolle - und ihre Gruppengröße, wie Konstanzer Wissenschaftlerinnen nun zeigen

Mit einem Löffel Honig fängt man mehr Fliegen als mit einem Fass voll Essig“, lautet ein Sprichwort. Honigbienen hingegen wollen eigentlich niemanden fangen. Aber ihr Honig lockt zahlreiche Fressfeinde in die Kolonie. Fliegen sind noch leicht zu vertreiben, viele Räuber sind oft deutlich größer. Sie nehmen zahlreiche Stiche der Honigbienen in Kauf, damit sie an die süße Nahrung kommen. Um sie mit einem gemeinsamen Stechangriff abzuwehren, müssen sich die Honigbienen zusammenschließen.


Stechen oder nicht stechen? Für die Stechbereitschaft von Bienen spielt ein Alarmpheromon eine entscheidende Rolle - und ihre Gruppengröße, wie Konstanzer Wissenschaftlerinnen nun zeigen. Im Bild: Bienen auf dem Dach der Universität Konstanz.

Publikation:


Tatjana Petrov, Matej Hajnal, Julia Klein, David Safránek, Morgane Nouvian
Extracting individual characteristics from population data reveals a negative social effect during honeybee defence

Plos Computational Biology (2022)

DOI: 10.1371/journal.pcbi.1010305



Diese Verteidigungsreaktion wird in der Regel von vorübergehend spezialisierten Honigbienen, den so genannten Wächterbienen, ausgelöst. Sie überwachen die Umgebung der Kolonie. Wenn sie ein großes Tier entdecken, das sich dem Bienenvolk nähert, stechen die Wächterbienen den Eindringling entweder. Oder sie fahren als Drohhaltung ihren Stachel aus und schlagen mit den Flügeln, wobei sie manchmal zeitgleich in den Bienenstock zu den anderen Bienen fliegen.

Honigbienen holen andere Bienen des Volkes zu Hilfe

„In beiden Fällen bewirkt ihr Verhalten die Freisetzung des Alarmpheromons, einer komplexen Geruchsmischung, die direkt am Stachel sitzt“, erklärt die Biologin Morgane Nouvian. Durch dieses chemische Signal werden andere Honigbienen in der Nähe alarmiert und an den Ort der Störung gerufen. Dort entscheiden sie, ob sie sich entweder an der Verteidigung beteiligen und den Räuber stechen oder ihn mit anderen Mitteln vertreiben. Das Alarmpheromon am Stachel spielt folglich eine wichtige Rolle bei der Verteidigung der Kolonie. Doch hat auch die Gruppengröße einen Einfluss?

In einer interdisziplinären Zusammenarbeit entwickelten Nachwuchswissenschaftlerinnen vom Centre for the Advanced Study of Collective Behaviour der Universität Konstanz ein Modell und eine Methodik, um herauszufinden, wie sich die Reaktion von Honigbienen auf das bei der Verteidigung ausgeschüttete Alarmpheromon je nach Gruppengröße verändert. „Unser Ziel ist es, die Auswirkung der Rahmenbedingungen auf die Abwehrreaktion der einzelnen Bienen zu untersuchen“, sagt Hauptautorin Morgane Nouvian. Das Team konzentrierte sich hierfür auf die Gruppengröße, da frühere Studien zeigten, dass dieser Faktor aggressive Reaktionen bei sozialen Insekten beeinflussen kann.

Petrov weiter: „Soziales Feedback zu verstehen – also die Anpassung des kollektiven Verhaltens an Veränderungen der Gruppengröße –, erforderte den Umgang mit komplexen Modellen und begrenzten experimentellen Daten und damit die Integration modellbasierter und datengesteuerter Methoden.“

Zweigleisiger Forschungsansatz

Die Autorinnen beobachteten zunächst das Verhalten von Bienengruppen, die in einer Vorrichtung mit einer rotierenden Attrappe konfrontiert wurden. Das Forscherteam quantifizierte die Abwehrreaktion der Insekten. Dafür zählten sie am Ende eines jeden Versuchs die Anzahl der Stacheln in der Attrappe. Im nächsten Schritt verwendeten sie ein mathematisches Modell der Gruppendynamik, das die Wahrscheinlichkeit, ob eine einzelne Biene bei einer bestimmten Pheromon-Konzentration sticht, transparent mit dem im Experiment beobachteten Ergebnis ins Verhältnis setzt.

Das Verhalten Einzelner aus Gruppendaten zu extrahieren, sei aus Sicht der Informatik auf mehreren Ebenen herausfordernd, meint Petrov: „Es gibt bei Modellen über Gruppenverhalten viel zu viele Kombinationsmöglichkeiten und eine wachsende Anzahl von Modellparametern“, erklärt die Informatikerin. „Zudem sind Methoden zur Quantifizierung von Unsicherheitsfaktoren notwendig, um unbekannte Parameter oder die begrenzte Größe der Datenstichprobe mit einzubeziehen.“

Bienen berücksichtigen ihr soziales Umfeld bei ihrer Entscheidung zu stechen

Die Zusammenarbeit zwischen Informatikern und Neurobiologen eröffnete beiden Seiten eine neue Forschungsperspektive, wie die Autorinnen resümieren: „Computertechnisch haben wir eine neuartige Methode vorgeschlagen, um individuelles Verhalten aus Populationsdaten zu extrahieren“, erklärt Tatjana Petrov. „Wir haben modernste formale Methoden und statistische Schlussfolgerungen kombiniert.“ Das Softwaretool der Autorinnen integriert alle Analyseschritte modular. Vom Doktoranden Matej Hajnal entwickelt und gewartet, ermöglicht die Software die Konzentration auf die biologische Fragestellung, während sie sowohl eine eindeutige Modellinterpretation als auch eine Quantifizierung der Unsicherheit liefert.

„Auf der biologischen Seite haben wir den Beweis erbracht, dass Bienen bei der Entscheidung zu stechen, ihren sozialen Kontext berücksichtigen“, fasst Nouvian zusammen. „Zu dem Ergebnis kommen wir, indem wir unsere Analyse für jede Gruppengröße separat durchgeführt und dann die Dosis-Wirkungs-Kurve mit dem erhaltenen Alarmpheromon verglichen haben.“ Die Autorinnen zeigen, dass mit zunehmender Gruppengröße weniger weitere Bienen zu Hilfe fliegen – was als sozialer Bremsmechanismus zusätzlich zur Alarmpheromon-Kommunikation im Spiel ist.

Übertragbarkeit auf eine Reihe von anderen biologischen Systemen

„Unsere Methodik befasst sich zwar mit einem spezifischen sozialen Phänomen bei Honigbienen, kann aber auch als Proof-of-Concept für die aktuelle Herausforderung betrachtet werden, die Blackbox-Modelle des beobachteten kollektiven Verhaltens zu ‚öffnen‘ und interpretierbare Verhaltenshypothesen auf Ebene der Individuen zu erstellen“, sagt Petrov. Sie geht davon aus, dass sich ihr Ansatz auf eine Reihe anderer biologischer Systeme übertragen lässt. „Im Hinblick auf eine breitere Anwendung unseres Ansatzes stehen wir aber vor neuen rechnerischen Herausforderungen, insbesondere im Hinblick auf die Skalierbarkeit und die Quantifizierung von Unsicherheiten, z. B. bei großen Populationen, ungenauen Messungen und einer größeren kognitiven Kapazität von Individuen.“


Diese Newsmeldung wurde mit Material der Universität Konstanz via Informationsdienst Wissenschaft erstellt.

Mehr zu den Themen


warte
warte
warte
warte
warte
warte
warte
warte
warte
warte