2,4-Dibromphenol

Strukturformel
Strukturformel von 2,4-Dibromphenol
Allgemeines
Name 2,4-Dibromphenol
Andere Namen

2,4-Dibrom-1-hydroxybenzol

Summenformel C6H4Br2O
Kurzbeschreibung

weißer bis hellbrauner Feststoff mit phenolartigem Geruch[1]

Externe Identifikatoren/Datenbanken
CAS-Nummer 615-58-7
PubChem 12005
Wikidata [[:d:Lua-Fehler in Modul:Wikidata, Zeile 865: attempt to index field 'wikibase' (a nil value)|Lua-Fehler in Modul:Wikidata, Zeile 865: attempt to index field 'wikibase' (a nil value)]]
Eigenschaften
Molare Masse 251,9 g·mol−1
Aggregatzustand

fest

Schmelzpunkt

40 °C[2]

Siedepunkt
Dampfdruck

386 mPa (25 °C)[4]

pKS-Wert

7,79 (25 °C)[2]

Löslichkeit

2,2 g·l−1[1]

Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung [3]
Gefahrensymbol

Gefahr

H- und P-Sätze H: 300​‐​315​‐​319​‐​335
P: 261​‐​264​‐​301+310​‐​305+351+338 [3]
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.

2,4-Dibromphenol ist eine chemische Verbindung, die sowohl zu den Phenolen, als auch zu den Halogenaromaten zählt.

Darstellung

2,4-Dibromphenol kann durch Bromierung von 3-Trimethylsilylphenol mit stöchiometrischen Mengen von elementarem Brom und anschließender Hydrolyse hergestellt werden. Bei Verwendung von überschüssigem Brom entsteht 2,3,4,6-Tetrabromphenol.[5]

Herstellung von 2,4-Dibromphenol

Eigenschaften

Der Flammpunkt von 2,4-Dibromphenol liegt bei 113 °C.[3]

Derivate

Der Methylether kann durch Methylierung mit Dimethylsulfat hergestellt werden und ist auch unter dem Trivialnamen 2,4-Dibromanisol (CAS 21702-84-1) bekannt. Sein Schmelzpunkt liegt bei 61,5 °C, sein Siedepunkt bei 272 °C.[2]

Herstellung von 2,4-Dibromanisol aus 2,4-Dibromphenol durch Methylierung mit Dimethylsulfat

Der Ethylether mit dem Trivialnamen 2,4-Dibromphenetol (CAS 38751-57-4) schmilzt bei 53,5 °C.[2]

Veresterung mit Essigsäureanhydrid liefert das Acetat, das bei 36 °C schmilzt (CAS 36914-79-1).[2]

Weitere Bromierung von 2,4-Dibromphenol mit Brom in Kaliumbromid-Lösung liefert 2,4,6-Tribromphenol, das seinerseits mit Brom zum 2,4,4,6-Tetrabrom-2,5-cyclohexadienon weiterreagiert.[6] Diese Reaktion kann durch Iodwasserstoff umgekehrt werden.[7]

Bromierung von 2,4-Dibromphenol

Einzelnachweise

  1. 1,0 1,1 1,2 1,3 Datenblatt 2,4-Dibromphenol bei AlfaAesar (PDF) (JavaScript erforderlich).
  2. 2,0 2,1 2,2 2,3 2,4 2,5 Dictionary of organic compounds, S. 1971 (eingeschränkte Vorschau in der Google-Buchsuche).
  3. 3,0 3,1 3,2 3,3 Datenblatt 2,4-Dibromophenol bei Sigma-Aldrich (PDF).Vorlage:Sigma-Aldrich/Abruf nicht angegeben Referenzfehler: Ungültiges <ref>-Tag. Der Name „Sigma“ wurde mehrere Male mit einem unterschiedlichen Inhalt definiert.
  4. 4,0 4,1 Paul Howe et al.: "2,4,6-tribromophenol and other simple brominated Phenols" (eingeschränkte Vorschau in der Google-Buchsuche).
  5. Tadashi Hashimoto: "Synthesis of Organosilicon Compounds VII. On the Reaction of 3-Trimethylsilylphenol with Electrophilic Reagents", in: Yakugaku Zasshi, 1960, 80, S. 1399–1404; PDF.
  6. John A. Price: "The Structure of Tribromophenol bromide", in: J. Am. Chem. Soc., 1955, 77 (20), S. 5436–5437; doi:10.1021/ja01625a081.
  7. Hans P. Latscha, Helmut A. Klein, Gerald W. Linti: "Analytische Chemie: Chemie-Basiswissen III", S. 287 (eingeschränkte Vorschau in der Google-Buchsuche).

Die News der letzten Tage

29.03.2023
Entwicklungsbiologie | Neurobiologie | Zytologie
Wenn Nervenzellen hungern
Die Entwicklung unseres Gehirns benötigt die richtigen Nährstoffe zur richtigen Zeit. Diese liefern die notwendige Energie für zelluläre Prozesse, die der Gehirnbildung zugrunde liegen. Was passiert aber, wenn diese Stoffe nicht verfügbar sind?
29.03.2023
Neurobiologie
Anders als gedacht: Gehirn verarbeitet Seheindrücke auch rückwärts
Warten wir auf der Straße auf jemanden, mit dem wir verabredet sind, erkennen wir die Person meistens oft schon von Weitem zwischen anderen Menschen.
28.03.2023
Mikrobiologie | Physiologie | Vogelkunde
Darmflora von Seevögeln durch Mikroplastik verändert
Je mehr Mikroplastik wilde Seevögel wie Eissturmvogel und Corysturmtaucher mit der Nahrung aufnehmen, desto stärker verändert sich die mikrobielle Vielfalt im Darm.
28.03.2023
Klimawandel | Ökologie
Frost im Frühling: Wie Bäume damit zurechtkommen
Durch den Klimawandel treiben viele Laubbäume früher aus, doch das Risiko von Spätfrösten im Frühjahr bleibt hoch und extreme Trockenphasen werden häufiger.
28.03.2023
Klimawandel | Primatologie
Klimawandel bedroht Lemuren auf Madagaskar
Mausmaki: Auch vermeintlich anpassungsfähige Säugetierarten haben ein erhöhtes Aussterberisiko.
23.03.2023
Genetik | Physiologie
Gene für Augenfarbe wichtig für eine gesunde Netzhaut
Forscher untersuchten, wie vier Gene der Fruchtfliege Drosophila, die für die Farbgebung der Augen verantwortlich sind, auch für die Gesundheit des Netzhautgewebes essentiell sind.
23.03.2023
Genetik | Physiologie
An der „Auferstehung“ sind viele Gene beteiligt
Manche Pflanzen können Monate ohne Wasser überleben, um dann nach einem kurzen Regenguss wieder zu ergrünen.
22.03.2023
Physiologie
Startschuß zur optischen Wahrnehmung
Forschende haben den molekularen Vorgang entschlüsselt, der als Allererstes im Auge abläuft, wenn Licht auf die Netzhaut trifft.
22.03.2023
Neurobiologie
Wettbewerb zwischen den Gehirnhälften im Schlaf
Der Mensch ist beidseitig symmetrisch: unser Gehirn besteht aus zwei Hälften, den so genannten Hemisphären.
22.03.2023
Neurobiologie | Physiologie
Warum wir von Schokoriegeln und Co. nicht die Finger lassen können
Schokoriegel, Chips und Pommes - warum können wir sie im Supermarkt nicht einfach links liegen lassen?
22.03.2023
Biochemie | Genetik | Zytologie
Aus Perspektive eines Ingenieurs ist Biologie chaotisch und unvollkommen
Der Vorteil von Redundanz in biologischen Systemen.
21.03.2023
Paläontologie
Neue Augen bei Trilobiten entdeckt
Wissenschaftler*innen der Universitäten Köln und Edinburgh entdecken bisher übersehene Augen bei Trilobiten.
21.03.2023
Bionik, Biotechnologie und Biophysik | Bioinformatik
Molekularbiologie trifft auf Quantenphysik
Biologische Systeme sind hochkomplex: Sie werden vor allem über genregulatorische Netzwerke gesteuert, in denen Gene, Proteine und RNA auf vielfältige Art interagieren.