Abschlussgewebe

Icon tools.svg

Dieser Artikel wurde aufgrund von formalen oder inhaltlichen Mängeln in der Qualitätssicherung Biologie zur Verbesserung eingetragen. Dies geschieht, um die Qualität der Biologie-Artikel auf ein akzeptables Niveau zu bringen. Bitte hilf mit, diesen Artikel zu verbessern! Artikel, die nicht signifikant verbessert werden, können gegebenenfalls gelöscht werden.

Lies dazu auch die näheren Informationen in den Mindestanforderungen an Biologie-Artikel.

Der Begriff des Abschlussgewebes bezeichnet alle Begrenzungsschichten, die pflanzliche Gewebe nach außen oder im Pflanzeninnern untereinander abgrenzen. Die primären Abschlussgewebe gehen aus dem Meristem hervor, sekundäre Abschlussgewebe wie das Periderm werden zu einem späteren Zeitpunkt gebildet.

Primäres Abschlussgewebe

  • beim Keimling bereits vorhanden
  • aus dem primären Meristem gebildet
  • undifferenziertes Gewebe

Epidermis

Das wichtigste primäre Abschlussgewebe der Pflanzen ist die Epidermis (Hautgewebe). Sie umgibt den Spross als schützende Hülle, die jedoch zugleich den Stoffaustausch mit der Außenwelt zu vermitteln hat. Das primäre Abschlussgewebe der Wurzel wird Rhizodermis genannt.

Merkmale (Spross)

  • meist einschichtig
  • es treten vermehrt Leukoplasten auf im Gegensatz zu Chloroplasten
  • wellig bis zackiger Umriss
  • lückenlose Verzahnung

Die Außenwände der Epidermiszellen sind fast stets verdickt und außerdem von einem Kutinhäutchen, der Kutikula, überzogen, die für Wasser und Gase besonders dann undurchlässig ist, wenn noch ein Wachs ein- oder aufgelagert ist.

Typische Ausbildungen der Epidermis stellen die Spaltöffnungen dar, die dem regulierbaren Gasaustausch zwischen dem Pflanzenkörper und der Umgebung dienen. Anhangsgebilde der Epidermis sind Emergenzen oder Trichome.

Kutisgewebe

Ein anderes primäres Abschlussgewebe ist das Kutisgewebe, das durch nachträgliche Verkorkung primärer Dauerzellen, etwa der Epidermis, oder - häufiger – lückenlos verbundener subepidermaler Parenchymschichten entsteht (Wurzel). Die Endodermis grenzt immer Gewebebezirke gegeneinander ab. Sie findet sich zum Beispiel regelmäßig in der Wurzel, wo sie den Zentralzylinder von der Rinde trennt.

Sekundäres Abschlussgewebe

Wenn die Epidermis einem starken Dickenwachstum der Pflanzenorgane, wie es beispielsweise bei Holzgewächsen vorkommt, nicht durch entsprechendes Dilatationswachstum (tangentiales Erweiterungswachstum) gerecht werden kann, wird sie zerstört und oft durch sekundäre Abschlussgewebe ersetzt. Gewöhnlich entsteht aus der subepidermalen Zellschicht ein Folgemeristem, das Korkkambium oder Phellogen. Dieses gibt nach außen dicht aneinanderliegende, rasch verkorkende, oft dickwandige Zellen ohne Interzellularen ab, den Kork. Nach innen entstehen, oft in geringer Anzahl, chlorophyllhaltige Rindenzellen, das Phelloderm. Kork, Phellogen und Phelloderm werden zusammen als Periderm (Korkgewebe) bezeichnet. Den Gasaustausch durch die lückenlose, interzellularenfreie Korkschicht ermöglichen Lentizellen oder Korkwarzen. Diese stellen eng umgrenzte Gewebebezirke dar, in denen sich anstelle von Korkzellen interzellularenreiches Füllgewebe gebildet hat, das aus großen Parenchymzellen besteht. Die Interzellularen der Lentizellen ermöglichen eine Verbindung zwischen dem Interzellularsystem der Pflanze und der Außenluft. Die Lentizellen sind vielfach als strich- oder pustelförmige Erhebungen mit bloßem Auge auf den Zweigen vieler Holzpflanzen zu erkennen. Bei stark in die Dicke wachsenden Pflanzen, zum Beispiel bei den meisten Bäumen, stellt das erste Korkkambium seine Tätigkeit bald ein. An seine Stelle tritt ein in tiefer liegenden Gewebeschichten entstehendes zweites Korkkambium. Auch dieses ist nur beschränkte Zeit tätig und wird durch ein drittes ersetzt und so weiter. Die Gesamtheit dieser Korkschichten wird als Borke bezeichnet. Da der Prozess der Borkenbildung bald von der primären Rinde auf den Bast übergreift, sind die neuen Korklagen in der Regel durch Schichten von Bastzellen getrennt. Daraus resultiert ein geschichteter Bau, der in der Regel bereits makroskopisch sichtbar ist, da die einzelnen Korklagen, die ja von Wasser- und Nährstoffzufuhr abgeschlossen sind, rasch absterben und sich bald schichtenweise ablösen.

Die News der letzten Tage

27.01.2023
Land-, Forst-, Fisch- und Viehwirtschaft | Neobiota | Ökologie
Auswirkungen von fremden Baumarten auf die biologische Vielfalt
Nicht-einheimische Waldbaumarten können die heimische Artenvielfalt verringern, wenn sie in einheitlichen Beständen angepflanzt sind.
27.01.2023
Biochemie | Botanik | Physiologie
Wie stellen Pflanzen scharfe Substanzen her?
Wissenschaftler*innen haben das entscheidende Enzym gefunden, das den Früchten der Pfefferpflanze (lat Piper nigrum) zu ihrer charakteristischen Schärfe verhilft.
26.01.2023
Biochemie | Mikrobiologie | Physiologie
Ein Bakterium wird durchleuchtet
Den Stoffwechsel eines weit verbreiteten Umweltbakteriums hat ein Forschungsteam nun im Detail aufgeklärt.
26.01.2023
Bionik, Biotechnologie und Biophysik | Botanik | Physiologie
Schutzstrategien von Pflanzen gegen Frost
Fallen die Temperaturen unter null Grad, bilden sich Eiskristalle auf den Blättern von winterharten Grünpflanzen - Trotzdem überstehen sie Frostphasen in der Regel unbeschadet.
26.01.2023
Entwicklungsbiologie | Genetik
Neues vom Kleinen Blasenmützenmoos
Mithilfe mikroskopischer und genetischer Methoden finden Forschende der Universität Freiburg heraus, dass die Fruchtbarkeit des Laubmooses Physcomitrella durch den Auxin-Transporter PINC beeinflusst wird.
26.01.2023
Klimawandel | Mikrobiologie | Mykologie
Die Art, wie Mikroorganismen sterben beeinflusst den Kohlenstoffgehalt im Boden
Wie Mikroorganismen im Boden sterben, hat Auswirkungen auf die Menge an Kohlenstoff, den sie hinterlassen, wie Forschende herausgefunden haben.
25.01.2023
Entwicklungsbiologie | Evolution
Wie die Evolution auf unterschiedliche Lebenszyklen setzt
Einem internationalen Forscherteam ist es gelungen, eines der Rätsel der Evolution zu lösen.
24.01.2023
Biochemie | Ökologie | Physiologie
Moose verzweigen sich anders... auch auf molekularer Ebene
Nicht-vaskuläre Moose leben in Kolonien, die den Boden bedecken und winzigen Wäldern ähneln.
24.01.2023
Bionik, Biotechnologie und Biophysik | Genetik
Verfahren der Genom-Editierung optimiert
Im Zuge der Optimierung von Schlüsselverfahren der Genom-Editierung ist es Forscherinnen und Forschern in Heidelberg gelungen, die Effizienz von molekulargenetischen Methoden wie CRISPR/Cas9 zu steigern und ihre Anwendungsgebiete zu erweitern.
24.01.2023
Ökologie | Zoologie
Kooperation der männlichen australischen Spinnenart Australomisidia ergandros
Forschende konnten in einer Studie zeigen, dass Männchen der australischen Spinne Australomisidia ergandros ihre erjagte Beute eher mit den anderen Mitgliedern der Verwandtschaftsgruppe teilen als die Weibchen.
24.01.2023
Bionik, Biotechnologie und Biophysik | Physiologie
Mutante der Venusfliegenfalle mit Zahlenschwäche
Die neu entdeckte Dyscalculia-Mutante der Venusfliegenfalle hat ihre Fähigkeit verloren, elektrische Impulse zu zählen.
23.01.2023
Biochemie | Physiologie
neue Einblicke in Mechanismen der Geschmackswahrnehmung
Die Komposition der Lebensmittel, aber auch die Speisenabfolge ist für das perfekte Geschmackserlebnis eines Menüs entscheidend.
19.01.2023
Biodiversität | Neobiota | Ökologie
Starke Zunahme von gebietsfremden Landschnecken
Invasive Landschneckenarten können heimische Arten verdrängen und der menschlichen Gesundheit schaden.
18.01.2023
Insektenkunde | Physiologie | Toxikologie
Was Pflanzengifte bei Monarchfaltern bewirken
Monarchfalter, die zur Abwehr von Fressfeinden große Mengen an Pflanzentoxinen einlagern, tun dies auf Kosten oxidativer Schäden, die die Auffälligkeit ihrer orangefarbenen Flügel beeinflussen.