Elektrokardiogramm


Das Elektrokardiogramm (EKG) (zu altgr. καρδία {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) ‚Herz‘ bzw. ‚Mageneingang‘ und γράμμα {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) ‚Geschriebenes‘) ist die Aufzeichnung der Summe der elektrischen Aktivitäten aller Herzmuskelfasern. Elektrokardiogramm heißt auf Deutsch Herzspannungskurve, gelegentlich wird es auch Herzschrift genannt.

Datei:Standard-ekg.jpg
typisches 6-Kanal-EKG
Ein unauffälliges 12-Kanal-EKG

Jeder Kontraktion des Herzmuskels geht eine elektrische Erregung voraus, die im Normalfall vom Sinusknoten ausgeht. Über das herzeigene elektrische Leitungssystem aus spezialisierten Herzmuskelzellen läuft sie zu den übrigen Herzmuskelzellen. Diese elektrischen Spannungsänderungen am Herzen kann man an der Körperoberfläche messen und im Zeitverlauf aufzeichnen. Es ergibt sich ein immer wiederkehrendes Bild der elektrischen Herzaktion. Mit dem EKG lassen sich vielfältige Aussagen zu Eigenschaften und Gesundheit des Herzens treffen. Zu beachten ist, dass das Oberflächen-EKG nur die elektrische Aktivität des Herzmuskels anzeigt, nicht jedoch die tatsächliche Auswurfleistung widerspiegelt. Meist wird das EKG von zunehmend verlässlicheren Computerprogrammen ausgewertet, was jedoch die Beurteilung der Aufzeichnung auf Papier oder dem Bildschirm durch den Arzt – noch – nicht entbehrlich macht.

Geschichte

Frühe Form der EKG-Ableitung nach Einthoven durch Eintauchen der Extremitäten in Wannen mit Salzlösung

1843 erkannte Carlo Matteucci durch Experimente an Taubenherzen, dass die Herztätigkeit auf elektrischen Vorgängen beruht. 1882 leitete der Physiologe Augustus Desiré Waller an seinem Hund Jimmy das erste Mal ein EKG ab, indem er dessen vier Pfoten in leitfähige Silberchloridlösung tauchte. 1887 konnte er erstmals Herzströme mit Hilfe eines Kapillarelektrometers aufzeichnen.

Die Instrumente wurden 1903 wesentlich von Willem Einthoven verbessert, der das EKG zu einem brauchbaren Diagnoseverfahren entwickelte und in der Klinik einführte. Die von ihm eingeführte Terminologie wird noch heute verwendet. Er wollte zunächst auf eine einzige Ableitung standardisieren, bei der der Patient beide Arme in getrennte Lösung taucht (Einthoven I). Da das nicht ausreichte, kamen die weiteren Extremitätenableitungen Einthoven II (rechter Arm – linkes Bein) und III (linker Arm - linkes Bein) sowie später die Wilson-Ableitungen an der Brustwand (nach Frank Norman Wilson, 1934) und die Goldberger-Ableitungen (nach Emanuel Goldberger, 1942) hinzu, welche unten erläutert werden.

Nutzen

Das EKG ist ein schmerzloses, nicht eingreifendes (nicht-invasives), jederzeit wiederholbares und fast überall durchführbares Untersuchungsverfahren.

Aus dem EKG können Herzfrequenz, Herzrhythmus und der Lagetyp (elektrische Herzachse, vgl. Cabrerakreis) bestimmt und die elektrische Aktivität von Herzvorhöfen und Herzkammern abgelesen werden. Für die Diagnostik von Herzrhythmusstörungen wie Extraschlägen (Extrasystolen) und Störungen der Erregungsleitung und -ausbreitung (z. B. Schenkelblock und AV-Block) ist das EKG ebenso unverzichtbar wie zur Erkennung eines Herzinfarktes. Störungen der Erregungsrückbildung (Repolarisation) können zu sogenannten Kammerendteilveränderungen (Veränderungen der ST-Strecke oder der T-Welle) führen, die Aktivität eines Herzschrittmachers stellt sich als sehr schmaler, senkrechter Strich (Spike) dar.

Das EKG kann auch Hinweise auf eine Verdickung der Herzwand (Hypertrophie des Myokards), eine abnorme Belastung des rechten oder linken Herzens, Entzündungen von Herzbeutel (Perikarditis) oder Herzmuskel (Myokarditis) sowie Elektrolytstörungen und unerwünschte Arzneimittelwirkungen liefern.

Bezüglich der meisten Diagnosen liefert das EKG nur Hinweise und darf nicht unabhängig vom klinischen Bild beurteilt werden (z.B. Herzinfarkt, Hypertrophiezeichen, Myokarditis). Lediglich bei Störungen des Herzrhythmus oder der Erregungsleitung kann man aus dem EKG allein meist schon eine klare Diagnose stellen.

Methoden

Konventionelles EKG

Ableitung mit zwölf Kanälen:

Drei Ableitungen an den Extremitäten nach Einthoven (bipolar)

  • Ableitung I zwischen rechtem und linkem Arm
  • Ableitung II zwischen rechtem Arm und linkem Bein
  • Ableitung III zwischen linkem Arm und linkem Bein

Drei Ableitungen an den Extremitäten nach Goldberger (unipolar)

  • Ableitung aVR zwischen rechtem Arm und den zusammengeschalteten Elektroden von linken Arm und linkem Bein
  • Ableitung aVL zwischen linkem Arm und den zusammengeschalteten Elektroden von rechtem Arm und linkem Bein
  • Ableitung aVF zwischen linkem Fuß und den zusammengeschalteten Elektroden von beiden Armen

Sechs Brustwandableitungen nach Wilson (unipolar)

  • V1 – V6

(→ Hinweis: Die vorgenannten Ableitungen werden auch oft als Standardableitungen bezeichnet.)

Nach Nehb (bipolar). Hier werden die 3 Ableitungen nach Einthoven auf die Brustwand übertragen und bilden damit ein kleines Herzdreieck

  • Nst Sternalansatz der zweiten Rippe rechts
  • Nax im fünften Interkostalraum auf der hinteren Axillarlinie
  • Nap im fünften Interkostalraum auf der der linken Medioclavikularlinie

Vektor-EKG

Die elektrische Herzerregung wird mit einem 3D-Vektor dargestellt, der zu jedem Zeitpunkt Richtung und Länge darstellt, er kann durch drei linear unabhängige Vektoren beschrieben werden: Länge, Höhe, Breite. Dies sind sogenannte Basisvektoren, die für alle Zeitpunkte Spitzen haben, die eine Raumkurve bilden (Vektorschleife).

Arten

tragbarer EKG-Monitor mit integriertem Defibrillator und externem Schrittmacher
Nahansicht mit erkennbarem Sinusrhythmus

Ruhe-EKG

Das normale Ruhe-EKG wird meist im Liegen angefertigt. Da es nur einige Sekunden dauert, kann man es auch bei Notfällen gut durchführen. Es ist als kardiologische Basisuntersuchung die Variante mit der größten Aussagekraft. Nur zeitweise auftretende Herzrhythmusstörungen (z. B. Extrasystolen, Salven, nächtliche Pausen) werden eventuell nicht erfasst.

Langzeit-EKG

Zur Aufzeichnung des Langzeit-EKGs (syn.: Holter) trägt der Patient meist über 24, manchmal auch über 48 oder 72 Stunden ein tragbares EKG-Gerät mit sich. Es werden meist zwei oder drei Kanäle abgeleitet. Es wird in erster Linie zur Rhythmusdiagnostik verwendet und beantwortet die Fragen, ob durchgehend ein Sinusrhythmus vorliegt und dieser der körperlichen Belastung entsprechend variabel ist, ob Pausen oder Bradykardien vorkommen (z. B. passagere Sinusbradykardie bei Sick-Sinus-Syndrom, AV-Blockierungen, bradykardes Vorhofflimmern) oder kann dem Nachweis bösartiger Herzrhythmusstörungen (z. B. ventrikuläre Salven oder ventrikuläre Tachykardien) dienen.

Belastungs-EKG

Bei der Ergometrie wird üblicherweise entsprechend WHO-Schema der Patient definiert belastet. Dies wird verwendet, um das maximale Belastungsniveau sowie den Anstieg von Blutdruck und Herzfrequenz unter Belastung zu bestimmen. Im Weiteren können belastungsinduzierte Herzrhythmusstörungen sowie Erregungsrückbildungsstörungen provoziert und dokumentiert werden. Abgebrochen werden sollte der Belastungs-EKG, wenn der Blutdruck zu hoch ansteigt, bei fehlendem Blutdruckanstieg und Blutdruckabfall, bei allgemeiner Erschöpfung (Schwindel, Atemnot, Schmerzen in den Beinen, etc.) und wenn der maximale Puls erreicht ist (Formel zur Berechnung: 220 – Lebensalter). Blutdruck und Puls sollten auch nochmal nach einer Erholungsphase gemessen werden.

Fetales EKG

Das fetale Elektrokardiogramm ist ein selten in der Pränataldiagnostik verwendetes Verfahren zur Analyse der kindlichen Herzaktionen. Hierbei kann nach Blasensprung das EKG direkte Ableitung via spezieller Elektroden von der Kopfhaut des Fötus oder indirekt über Bauchdecke oder Rektum der Schwangeren abgeleitet werden.[1] (Siehe auch Kardiotokografie.)

Telemetrie

Eine Telemetrie (kurz Tele) ist eine Überwachungsmöglichkeit im Krankenhaus. Ähnlich dem Langzeit-EKG trägt der Patient ein mobiles Gerät bei sich, welches das EKG jedoch nicht aufzeichnet, sondern via Funk an einen Computer sendet. Die Daten werden kontinuierlich angezeigt und automatisch analysiert. Entsprechend einstellbarer Vorgaben (Alarmgrenzen) alarmiert der Computer akustisch und visuell das Personal.

Monitor

Ähnlich der Telemetrie überwacht ein Monitor einen Patienten im Krankenhaus. Im Gegensatz zur Tele registriert dieser jedoch nicht nur das EKG sondern teilweise auch eine Vielzahl anderer Parameter (Blutdruck, Sauerstoffsättigung, Körpertemperatur u. v. m.). Der Vorgang wird Monitoring genannt.

Implantierbarer Herzmonitor

Der implantierbare Herzmonitor ist ein EKG-Gerät, das den Herzrhythmus bis zu drei Jahre lang 24 Stunden täglich überwacht und Unregelmäßigkeiten aufzeichnet.[2] Das gespeicherte EGK kann Aufschluss darüber geben, ob die Ohnmachtsanfälle eine kardiale Ursache haben. Der Herzmonitor ist so groß wie ein USB-Stick und wird bei einem Routineeingriff, unter örtlicher Betäubung, über einen kleinen Schnitt unter die Haut geschoben.

Intrakardiales EKG (Mapping)

Im Rahmen einer elektrophysiologischen Untersuchung wird ein intrakardiales EKG über Elektroden abgeleitet, die meist über einen venösen Zugang (Leiste oder Arm) zum Herzen vorgeschoben werden. Es wird verwendet, um Herzrhythmusstörungen genauer zu differenzieren. Der Untersucher ist hierdurch in der Lage, ein präzises elektrisches Bild des Herzens zu erstellen.

Ösophagus-EKG

Hauptartikel: Gefilterte elektrokardiograpische Ableitung vom Ösophagus.

Es dient zur Beurteilung von Nahpotentialen der linken Herzwand und des linken Vorhofs. Die Länge in Zentimeter der Elektrodensonde ab Zahnreihe entspricht dem Index der Ableitung, z. B. V36. Das Verfahren hat heute keine klinische Bedeutung mehr. Anwendung fand das Ösophagus-EKG zur Diagnostik von Rhythmusstörungen, Hinterwandinfarkten und Septumhypertrophie.

Ableitungen

Polarität

Man unterscheidet bipolare und unipolare Ableitungen: Bei den bipolaren wird die Spannung zwischen zwei gleichberechtigten Punkten der Körperoberfläche registriert, bei unipolaren zwischen einer differenten und einer indifferenten (nahezu potentialkonstanten) Bezugselektrode (die entweder großflächig realisiert wird oder durch Mittelwertsbildung mehrerer Elektrodenspannungen entsteht). Da es praktisch nirgendwo ein Nullpotential gibt, nennt man diese auch oft semiunipolar.

Definierte Ableitungen

Elektrische Spannungen werden immer zwischen zwei Punkten gemessen, die in der Medizin Ableitungen genannt werden. In der Kardiologie gibt es verschiedene Vereinbarungen, an welchen Stellen am Körper man die zeitlich variablen Spannungen des Herzens ableiten soll. Nur so ist die Erstellung von Normalwerten (normales EKG) möglich.

  • Bei der bipolaren Ableitung nach Einthoven wird die elektrische Potenzialänderung zwischen den Extremitäten gemessen. Dabei steht Einthoven I für rechter Arm – linker Arm, Einthoven II für rechter Arm – linkes Bein und Einthoven III für linker Arm – linkes Bein. In der Regel wird diese Ableitung im Ampel-Schema geklebt (Rechter Arm: Rot, Linker Arm: Gelb, Linkes Bein: Grün).
  • Bei der unipolaren Ableitung nach Goldberger werden jeweils zwei Ableitungspunkte nach Einthoven zusammengeschaltet (indifferente Elektrode) und gegen die verbliebene (differente Elektrode) abgeleitet. Das ist bei aVR (augmented Voltage Right) der rechte Arm, bei aVL (augmented Voltage Left) der linke Arm und bei aVF (augmented voltage Foot) das (linke) Bein.
Datei:Precordial Leads 2.svg
Brustwandableitungen nach Wilson
  • Bei den unipolaren Brustwandableitungen nach Wilson wird die Elektrode V1 im 4. Interkostalraum (ICR) (unter der 4. Rippe) rechts neben dem Brustbein angebracht, V2 im 4. Interkostalraum am linken Sternalrand. V4 liegt im 5. ICR in der Medioklavikularlinie, also auf halber Länge des Schlüsselbeins, V3 liegt zwischen V2 und V4 (auf der 5. Rippe). V5 und V6 werden jeweils auf Höhe von V4 geklebt, wobei V5 auf der vorderen, V6 auf der mittleren Axillarlinie liegt. Diese Ableitungen können durch die Ableitungen V7–V9 ergänzt werden, die auch alle im 5. Interkostalraum liegen. V7 liegt in der hinteren Axillarlinie, V8 in der Scapulalinie und V9 in der Vertebrallinie. Gemessen wird die Spannung gegen die zusammengeschalteten Elektroden nach Goldberger (unipolar) durch ein Widerstandsnetzwerk, die somit zur indifferenten Elektrode werden. Diese zusätzlichen Ableitungen werden häufig bei Verdacht auf einen hohen Hinterwandinfarkt verwendet. Zum Nachweis eines ausschließlichen Hinterwandinfarktes dienen auch die Ableitungen V3R1, 2, 3 rechts von V3.
  • Die Ableitung nach Nehb ist eine bipolare Brustwandableitung. Für diese Ableitungen werden drei Ableitungspunkte Nst (Sternalansatz der 2. Rippe), Nap (5. ICR, linke Medioklavikularlinie) und Nax (5. ICR, hintere Axillarlinie) verwendet. Diese Ableitung zeigt das kleine Herzdreieck und dient der Darstellung von Potenzialänderungen der Hinterwand. Technisch gesehen ist es lediglich eine Verschiebung der Ableitungspunkte nach Einthoven auf die Brustwand.

Diese Vielzahl verschiedener Ableitungen ist nötig, um Ströme in verschiedenen Richtungen und damit Veränderungen in verschiedenen Bereichen des Herzmuskels zu erfassen. Dies dient zur Lokalisierung von Infarkten, Leitungsblöcken und Lagetypen (s. u.). Dabei zeigen die Brustwandableitungen V2–V6 auf die Vorderwand, I und avL auf die Seitenwand der linken Herzkammer und II, III, avF auf ihre Hinterwand. Die rechte Herzkammer ist allgemein nur selten von Bedeutung.

Maßnahmen zur Störgrößenminimierung

  • Elektrische Streufelder:
    • Abschirmung von Ableitungskabeln (Koaxkabel)
    • Galvanische Trennung der Steuer- und Bedieneinheit von der (analogen) Messschaltung
    • Bandpassfilter hoher (4. oder 5.) Ordnung im Signalweg zur Unterdrückung störender Frequenzen
    • Vergrößern des Abstandes zwischen Störquelle und Messanordnung
    • Abschirmung des Gehäuses und des Patienten durch einen Faradayschen Käfig
  • Magnetische Streufelder:
    • Verdrillen der Messleitung
    • Vergrößern des Abstandes zwischen Störquelle und Messanordnung
    • Veränderung der Patientenlage
  • Elektroden:
    • Vermindern der Elektrodenübergangswiderstände durch vorherige Entfettung der Haut und große Berührflächen
    • Fixierung der Elektrodenposition gegen Bewegung (besonders bei EKG-getriggerter Bildgebung)
    • Elektrodenanpressdruck so hoch, wie vernünftigerweise erreichbar
  • Verstärker:
    • Hoher Eingangswiderstand/Impedanz (> 108 Ohm), dadurch besseres Nutzsignal im Vergleich zum Störanteil
    • Geringe Eingangskapazität (z. B. durch angeschlossenes Kabel) (< 2000 pF), da sonst Verfälschungen des Eingangssignals durch Tiefpasswirkung
    • Spezialisierte Instrumentenverstärker mit sehr hoher Gleichtaktunterdrückung
  • Entkopplung des Patienten vom medizinischen Gerät und seinen auf Phase bezogenen Schaltteilen durch Galvanische Trennung bringt Vorteile:
    • Erhöhung der Gleichtaktunterdrückung
    • Erhöhung des Isolationswiderstandes
    • Reduzierung der Patientenableitströme

Nomenklatur und Normwerte

Schematische Darstellung eines EKG mit Bezeichnungen

Das EKG wird auf Millimeterpapier oder elektronisch aufgezeichnet. Dabei beträgt die Schreibgeschwindigkeit meist 50 mm/s und die Auslenkung 10 mm/mV. Ein Millimeter entspricht also in Schreibrichtung 0,02 s und in der Höhe 0,1 mV. Vor der Aufzeichnung geben die meisten Geräte eine Eichzacke aus, die einem Ausschlag von 1 mV über 1 s entspricht. Sie dient als Referenz für die folgende Ableitung und erlaubt die Kontrolle von Gerätefunktion und Eichung.

Bezeichnung und Bedeutung der einzelnen Abschnitte:

Wellen

P-Welle

  • die P-Welle (max. 0,12 s) entspricht der Vorhoferregung (durch den Sinusknoten)

QRS-Komplex

Hauptartikel: QRS-Komplex.

  • der QRS-Komplex (max. 0,10 s) (ohne pathologische Veränderung findet man bei bis zu 21 % der Bevölkerung Werte bis 0,12 s[3]) entspricht der Kammererregung, wobei mit
    • Q der erste negative Ausschlag
    • R der erste positive Ausschlag und mit
    • S der negative Ausschlag nach der R-Zacke bezeichnet wird.

T-Welle

  • Die T-Welle entspricht der Erregungsrückbildung der Kammer.

U-Welle

Ein EKG eines 18-jährigen Patienten mit sichtbaren U-Wellen, am besten in der Ableitung V3 sichtbar.
  • die U-Welle ist eine mögliche Erscheinung nach der T-Welle, sie entspricht Nachschwankungen der Kammererregungsrückbildung, beispielsweise bei Elektrolytstörungen wie z.B. Hypokaliämie.

Intervalle

PQ-Intervall

  • PQ-Intervall (max. 0,2 s): Abstand vom Beginn der P-Welle bis zum Beginn der Q-Zacke, Ausdruck der atrioventrikulären Leitungszeit, also die Zeit zwischen dem Beginn der Erregung der Vorhöfe und der Kammern (Erregungsüberleitungszeit). Wenn keine Q-Zacke vorhanden war, spricht man von einem PR-Intervall (oder PR-Zeit).

QT-Intervall

  • QT-Intervall (oder QT-Zeit) heißt der Abstand vom Beginn der Q-Zacke bis zum Ende der T-Welle. Seine Normobergrenze ist variabel, weil sie mit zunehmender Herzfrequenz abnimmt. Die QT-Zeit bezeichnet die gesamte intraventrikuläre Erregungsdauer. Die QT-Zeit wird als absolute QT-Zeit (Normwerte bis maximal 0,44 s) gemessen und unter Verwendung der Herzfrequenz rechnerisch korrigiert.

ST-Strecke

  • Die ST-Strecke zeigt den Beginn der Erregungsrückbildung der Kammern an, sie sollte keine Hebung über 0,2 mV in zwei benachbarten Ableitungen aufweisen. Ihr Anfangspunkt definiert gleichzeitig die Nulllinie im EKG. Eine mögliche ST-Streckenhebung indiziert einen Sauerstoffmangel und einen drohenden Herzinfarkt.


Das EKG enthält den Namen des Untersuchten mit Datum und Uhrzeit. Meist sind auch die Werte der Herzfrequenz und der oben bezeichneten Strecken oder computererstellte Diagnosen aufgedruckt.

Diagnostik

Prinzip der Entstehung eines EKG

Die Diagnostik eines EKGs sollte entsprechend einem festen Schema erfolgen. Hilfreich bei der Interpretation ist ein EKG-Lineal und ein Zirkel.

Interpretationsschema (Beispiel)

Rhythmus

  • Sinusrhythmus: regelmäßige P-Wellen vorhanden und P-Wellen positiv in Ableitung II und III
  • Keine P-Wellen oder sägezahnartige Vorhoferregung
    • regelmäßig
      • schmaler Kammerkomplex: z. B. Vorhofflattern oder AV-Knoten-Reentry-Tachykardie
      • breiter Kammerkomplex: z. B. Ventrikuläre Tachykardie
    • unregelmäßig: Vorhofflimmern

Frequenz

  • Normal 60 bis 100 Schläge/min
  • über 100 Schläge/min → Tachykardie
  • unter 60 Schläge/min → Bradykardie

Überleitung

Die Überleitung zwischen Vorhof und Kammer

bei Verlängerung (PQ > 0,2 s) oder Ausfall von Überleitungen spricht man von einer AV-Blockierung

Form des Kammerkomplexes

  • Bei Verbreiterung über 0,1 s inkompletter, über 0,12 s kompletter Schenkelblock?
  • R-Verlust oder Q als Zeichen einer abgelaufenen Myokardschädigung
  • S in Ableitung I, II, und III (SISIISIII-Typ) oder S in I und Q in III (SIQIII-Typ) als Zeichen einer akuten Rechtsherzbelastung (etwa als Lungenembolie)

Erregungsrückbildung

  • Ischämiezeichen
    • Infarkt? (ST-Strecken-Hebung > 0,1 mV über der Hinterwand oder > 0,2 mV über der Vorderwand in zwei benachbarten Ableitungen. Erstickungs-T)
    • Angina pectoris (ST-Strecken-Senkung)
  • Elektrolytstörungen
  • QT-Intervall-Dauer, bei Verlängerung Gefahr bösartiger Rhythmusstörungen

Nulllinie

Die Nulllinie wird auch als dauerhafte isoelektrische Linie bezeichnet. Sie tritt auf, wenn keine Potentialdifferenz zwischen zwei Ableitpunkten anliegt (keine elektrische Aktivität des Herzens) und daher auch weder ein positiver noch ein negativer Ausschlag erkennbar ist. Sie ist typisch für eine Asystolie.

Lagetyp

Lagetypen im Cabrerakreis

Mit dem Lagetyp bezeichnet man die Verlaufsrichtung der elektrischen Erregungsausbreitung von der Herzbasis zur Herzspitze relativ zur Körperachse (elektrische Herzachse). Er kann einerseits etwas aussagen über die anatomische Stellung des Herzens im Brustkorb, andererseits über asymmetrische Verdickungen des Herzmuskels bei einer chronischen Belastung oder auch als Zeichen dienen für eine Größenzunahme bei einer akuten Belastung (beispielsweise Rechtslagetyp bei einer akuten Lungenembolie).

Physiologisch ist ein Steil- bis Linkstyp, wobei bei Neugeborenen ein Steiltyp vorherrscht. Mit zunehmendem Alter dreht sich die elektrische Herzachse nach links, sodass beim alten Menschen meist ein Linkstyp besteht.

Die Bestimmung des Lagetyps erfolgt am einfachsten mit Hilfe des Cabrerakreises, welcher üblicherweise auf jedem EKG-Lineal aufgetragen ist. In den Extremitätenableitungen (Einthoven und Goldberger) sucht man zunächst die Ableitung mit der größten R-Zacke. Sei dies beispielsweise die Ableitung aVF, so vergleicht man diese mit den R-Zacken der auf dem Cabrerakreis benachbarten Ableitungen, in diesem Falle II und III. Ist Ableitung II größer als III, so liegt ein Steiltyp vor, umgekehrt ein Rechtstyp. Um die Ableitung aVR in die Lagetypbestimmung mit einbinden zu können, wird sie an der isoelektrischen Linie gespiegelt. Manche EKGs zeichnen die so entstehende Ableitung −aVR eigenständig auf, meist misst man jedoch lediglich die R-Zacke.

Erregungsbildungsstörungen

Vorhofflimmern

Ein Vorhofflimmern erkennt man an einer absoluten Arrhythmie der Kammer, die QRS-Komplexe folgen in zufällig wechselnden Zeitabständen aufeinander. Die P-Welle ist nicht vorhanden, stattdessen sieht man häufig ein leichtes Zittern der Grundlinie, das sich gelegentlich vom normalen, messbedingten Zittern der Kurve wenig unterscheidet. Bei lang bestehendem Vorhofflimmern kann die isoelektrische Linie auch glatt verlaufen.

Vorhofflattern

Beim typischen Vorhofflattern ist in den Ableitungen II, III und aVF meist ein sehr charakteristisches Sägezahnmuster der Grundlinie erkennbar.

Erregungsleitungsstörungen

Atrioventrikulärer Block (AV-Block)

Einen AV-Block I° erkennt man an einer Verlängerung des PQ-Intervalls auf über 0,2 s.

Bei einem AV-Block II°-Wenckebach (auch Mobitz I genannt) wird das PQ-Intervall von Mal zu Mal länger, dann fällt ein QRS-Komplex ganz aus und es folgt eine weitere P-Welle, diesmal mit QRS-Komplex. Beim Grad II-Mobitz (auch Mobitz II genannt) (benannt nach dem Kardiologen Woldemar Mobitz) fällt plötzlich ein QRS-Komplex aus, ohne dass zuvor das PQ-Intervall länger geworden ist. Fällt jeder zweite QRS-Komplex aus, kann sowohl ein Wenckebach- als auch ein Mobitz-Block vorliegen.

Beim AV-Block III° wird die Vorhoferregung (P-Welle) nicht auf die Herzkammer übergeleitet. Falls existent springt ein sekundärer Schrittmacher im Bereich der Herzkammer ein. Dieser ventrikuläre Ersatzrhythmus hat nur eine Frequenz um 40 Schläge pro Minute oder langsamer. Entsprechend niedrig ist auch der Puls des Patienten. Im EKG finden sich regelmäßige P-Wellen und, hiervon unabhängig und deutlich langsamer, relativ breite Kammerkomplexe.

Da ein AV-Block II° Mobitz in einen AV-Block III° degenerieren kann, ist hierbei eventuell eine Versorgung mit einem Herzschrittmacher notwendig. Dabei hängt es aber von weiteren Faktoren, wie dem Auftreten von Symptomen wie Schwindel etc. ab, ob tatsächlich ein Herzschrittmacher eingesetzt werden sollte. Vermehrt werden bei Ausdauersportathleten AV-Blockierungen I. und II. Grades (letztere sehr vereinzelt, oft nachts auftretend) diagnostiziert, die mit Veränderungen des vegetativen Nervensystems zusammenhängen und lediglich regelmäßige Verlaufskontrollen nötig machen, dabei aber keine Einschränkungen der sportlichen Aktivität nach sich ziehen.

AV-Blöcke III. Grades machen das Einsetzen eines Schrittmachers unbedingt erforderlich.

Schenkelblock

Von einem kompletten Schenkelblock spricht man bei einer QRS-Komplexdauer > 0,12 s, inkomplett ist der Block bei einer QRS-Breite von 0,1 bis 0,12 s. Es können, abhängig vom blockierten Tawara-Schenkel, Rechtsschenkelblock, Linksschenkelblock sowie linksanteriorer und linksposteriorer Hemiblock unterschieden werden.

Präexzitationssyndrome

Besteht eine zusätzliche elektrische Verbindung zwischen Vorhöfen und Kammern neben dem AV-Knoten, so kann es zu einer vorzeitigen Erregung der Herzkammer kommen. Im EKG findet sich eine kleine positive Welle (rampenförmiger Aufstrich) direkt vor dem QRS-Komplex, die sogenannte Delta-Welle. Ein Beispiel für eine AV-Reentrytachykardie mit Präexzitation ist das WPW-Syndrom.

Erregungsrückbildung

EKG-Zeichen der Erregungsrückbildung sind die ST-Strecke und die T-Welle sowie, falls vorhanden, die U-Welle.

Herzinfarkt

Ein ausgedehnter (transmuraler) akuter Herzinfarkt äußert sich meist in einer horizontalen ST-Strecken-Hebung (ST-elevation myocardial infarction, ein Myokardinfarkt, mit ST-Strecken-Hebungen). Daneben sind auch Herzinfarkte ohne ST-Hebung möglich, so genannte nicht-transmurale Infarkte (oder Nicht-ST-Hebungsinfarkt, NSTEMI).

Mit Hilfe des EKGs kann eine Lokalisation des Infarktes vorgenommen werden. Die Ableitungen I, aVL, V1–5 weisen auf die Vorderseitenwand, II, III und avF auf die inferiore Wand hin. In den jeweils nicht betroffenen Ableitungen erscheint eine korrespondierende ST-Senkung. Daneben kann auch der zeitliche Verlauf des Infarktes bestimmt werden, der in verschiedenen Stadien typische Veränderungen zeigt.

Elektrolytstörungen

Eine Hypercalciämie äußert sich in einer verkürzten, eine Hypocalciämie in einer verlängerten QT-Strecke. Eine Hyperkaliämie kann zu erhöhten T-Wellen und verbreiterten QRS-Komplexen führen, eine Hypokaliämie zu einer ST-Senkung mit U-Welle (cave: Torsade de pointes).

Medikamente

Eine ganze Reihe von Medikamenten können die Erregungsrückbildung verändern. Häufig sind Verlängerungen der QT-Dauer (z. B. Amiodaron) mit der Gefahr gefährlicher Rhythmusstörungen. Digitalis bewirkt harmlose muldenförmige ST-Strecken-Senkungen.

QT-Syndrom

Falls QT < 1/2 RR dann ist QT normal

Bei einer frequenzkorrigierten Verlängerung des QT-Intervalls, dem QT-Syndrom oder Long-QT-Syndrom, kann es zu bedrohlichen Herzrhythmusstörungen kommen. Deutlich seltener ist das ebenfalls mit bösartigen Rhythmusstörungen einhergehende Short-QT-Syndrom.

Herzgröße

Vorhofhypertrophie

Die Vorhöfe werden gleichmäßig und annähernd radiär über die Arbeitsmuskulatur erregt, ohne spezifisches Reizleitungssystem wie in den Herzkammern. Entscheidend ist der Abstand vom Sinusknoten: Der erste Teil der P-Welle spiegelt die Aktivität des rechten, der zweite Teil die des linken Vorhofs.

  • P-dextroatriale (= P-pulmonale): Bei rechtsatrialer Hypertrophie ist die P-Welle in II, III, aVF und V1 über 0,20 mV erhöht und nicht verbreitert.
  • P-sinistroatriale: Bei Hypertrophie des linken Vorhofs wird zwar die P-Fläche (Vektor ÂP) proportional zur Vorhofhypertrophie größer; aufgrund der verlängerten Leitungswege kommt es jedoch zu einer Verlängerung der P-Dauer (P-Breite) über 0,11 sec, die P-Welle ist oft doppelgipfelig (besonders in I, II, V6), während die P-Höhe meist nicht zunimmt.[4]
  • P-biatriale: Sind beide Vorhöfe betroffen, findet man neben der Erhöhung des ersten Teils der P-Welle eine sehr ausgeprägte P-Wellen-Verlängerung und Doppelgipfligkeit. In den Brustwandableitungen V1 und V2 wird der Winkel α zwischen beiden P-Anteilen mit zunehmender Belastung des rechten Vorhofs steiler (über 45º).[4]

Domänen des Echokardiogramms (USKG) sind die Messung der Vorhofdilatation sowie die Diagnose von Raumforderungen, Klappen- und Septumdefekten. Im Gegensatz zum Elektroatriogramm (Vorhof-EKG) können für das USKG keine Grenzwerte der Vorhofhypertrophie benannt werden[5], ebenso nicht für die Volumetrie des rechten Vorhofs[6].

Kammerhypertrophie

Zeichen der Vergrößerung der Ventrikel ist der Sokolow-Lyon-Index. Weniger gebräuchlich sind der Lewis-Index (linksventrikuläre) und der Whitebock-Index (rechtsventrikuläre Hypertrophie).[7]

Einzelnachweise

  1. Pschyrembel Klinisches Wörterbuch, CD-ROM Version 2002
  2. 1.A.D. Krahn et al: Cost implications of testing strategy in patients with syncope: randomized assessment of syncope trial (RAST).J Am Coll Cardiol 42(3):495-501.
  3. Thieme: Th. Horacek: Der EKG-Trainier 2003
  4. 4,0 4,1 Praetorius, F., Neuhaus, G.: Zur Beurteilung der hämodynamischen Situation aus dem Vorhof-Elektrokardiogramm. (338 kB) In: Archiv für Kreislaufforschung, Band 53, Seite 131-146, 1967, Sonderdruck. Dr. Dietrich Steinkopff Verlag, Darmstadt, 23. Oktober 2005, abgerufen am 23. September 2010 (deutsch, english, summary): „6. Anhand von elektrophysiologischen Überlegungen wird die Potentialvergrößerung von P als Folge der Vorhofhypertrophie selbst gedeutet“.
  5. Voelker, W. et al.: Strukturierter Datensatz zur Befunddokumentation in der Echokardiographie – Version 2004. (569 kB) In: Z Kardiol 93: 987–1004 (2004). Deutsche Gesellschaft für Kardiologie – Herz- und Kreislaufforschung e.V. im Auftrag der Kommission für Klinische Kardiologie, 13. Dezember 2004, abgerufen am 23. September 2010 (deutsch, english, summary).DOI:10.1007/s00392-004-0182-1.
  6. Lang, Roberto M. et al.: Recommendations for chamber quantification. (3,14 MB) In: Eur J Echocardiography (2006) 7 (2): 79 - 108. European Society of Cardiology, 17. Februar 2006, S. 101, abgerufen am 23. September 2010 (englisch, Free Full Text): „there is too little peer reviewed validated literature to recommend normal RA (right atrium) volumetric values at this time“DOI:10.1016/j.euje.2005.12.014.
  7. Klinge, Rainer: Das Elektrokardiogramm. 7. Auflage. Thieme, Köln 1997, ISBN 3-13-554007-3 (S.161 ff.).

Literatur

  • Marc Gertsch: Das EKG. Springer, Berlin 2008, ISBN 3-540-79121-3
  • Rainer Klinge: Das Elektrokardiogramm. Thieme, Stuttgart 2002, ISBN 3-13-554008-1.
  • Rainer Klinge, Sybille Klinge: Praxis der EKG-Auswertung. Thieme, Stuttgart 2003, ISBN 3-13-596805-7.
  • Thomas Horacek: Der EKG-Trainer: Ein didaktisch geführter Selbstlernkurs mit 200 Beispiel-EKGs. Thieme, Stuttgart 2007, ISBN 3-13-110832-0.
  • Hans-Peter Schuster, Hans-Joachim Trappe: EKG-Kurs für Isabel. Thieme, Stuttgart 2005, ISBN 3-13-127284-8.

Weblinks

Commons: Electrocardiogram – Album mit Bildern, Videos und Audiodateien
Wikibooks: Elektrokardiographie – Lern- und Lehrmaterialien

Die News der letzten Tage