Fluss (Mathematik)
- Wikipedia:Vorlagenfehler/Vorlage:Literatur/Parameterfehler
- Differentialtopologie
- Theorie dynamischer Systeme
Das Konzept eines (Phasen-)Flusses in der Mathematik ermöglicht die Beschreibung zeitabhängiger (System-)Zustände. Es ist deshalb vor allem für die Analyse gewöhnlicher Differentialgleichungen von Bedeutung und findet damit Anwendung in vielen Bereichen der Mathematik und Physik. Formal ist der Fluss eine Operation einer Parameterhalbgruppe
Definition
Sei
heißt Fluss, wenn die folgenden Bedingungen erfüllt sind:
und
Wir haben also eine Halbgruppenwirkung.
Die Menge
heißt Orbit von
Falls die Abbildung
Lokaler Fluss
Für
und
erfüllt ist.[1] Ein lokaler Fluss mit
Diskussion
Im Hinblick auf die Analyse dynamischer Systeme beschreibt der Fluss die Bewegung im Phasenraum im Laufe der Zeit. Hierbei spricht man in Abhängigkeit von der Parametermenge
Betrachten wir ein System gewöhnlicher Differentialgleichungen
mit
Einzelnachweise
- ↑ Theodor Bröcker, Klaus Jänich: Einführung in die Differentialtopologie. Springer, Berlin 1973, ISBN 3-540-06461-3, S. 80 (§ 8. Dynamische Systeme).
Literatur
- Manfred Denker: Einführung in die Analysis dynamischer Systeme. Springer Verlag, Berlin, Heidelberg, New York 2005, ISBN 3-540-20713-9
- Werner Krabs: Dynamische Systeme: Steuerbarkeit und chaotisches Verhalten. B.G.Teubner, Leipzig 1998, ISBN 3-519-02638-4.