Metagenomik
Metagenomik (englisch metagenomics) ist ein Forschungsgebiet der Biowissenschaften, das mit modernen molekularbiologischen Methoden die Gesamtheit des Genoms eines Biotops zu erfassen versucht. Zu diesem Genom gehören vor allem Mikroorganismen, aber auch Viren sind ein wichtiges Element.
Der Begriff Metagenomik stammt aus einer Kombination der Begriffe Metaanalyse, einem Prozess aus der Statistik, bei dem unterschiedliche Ergebnisse aus verschiedenen Untersuchungen quantitativ vergleichbar gemacht werden sollen, und Genomik, der Analyse der kompletten Erbinformation (Genom) eines Organismus.
Als Metagenom bezeichnet man die Gesamtheit der genomischen Information der Mikroorganismen einer bestimmten Lebensgemeinschaft (Biozönose) oder eines Biotops.
Es wird allgemein angenommen, dass mehr als 99 % aller existierenden Mikroorganismen nicht kultivierbar und damit mit herkömmlichen, klassisch mikrobiellen Methoden auch nicht identifizierbar sind. Metagenomische Methoden ermöglichen die Identifizierung von Mikroorganismen unabhängig von ihrer Kultivierbarkeit. Neben den damit erstmals ermöglichten Einblicken in die Komplexität der Physiologie und der Ökologie von Mikroorganismen bergen metagenomische Ansätze mit der Analyse der natürlich vorkommenden Biodiversität auch ein gewaltiges Potential für die Identifizierung und Entwicklung neuer biotechnologischer und pharmazeutischer Produkte.
Das generelle Vorgehen einer metagenomischen Analyse umfasst die folgenden vier Schritte:
- Die Isolierung der genomischen DNA gefolgt von
- dem Verdau mit bestimmten Enzymen, den Restriktionsendonukleasen, als Vorbereitung zur Klonierung der entstehenden DNA-Fragmente.
- Die Erstellung einer genomischen DNA-Bibliothek durch Klonierung der DNA-Fragmente in spezielle Vektoren und Transformation in einen geeigneten kultivierbaren Modellorganismus (meist Escherichia coli) und letztendlich
- die Analyse der metagenomischen Bibliothek.
Dabei werden zwei generelle Typen von metagenomischen Untersuchungen verfolgt: funktionelle Ansätze und sequenzorientierte Ansätze.
Metagenomische Methoden
- Funktionelle Assays
- DNA Microarray Analysen
- PCR mit degenerierten Primern
- In situ-Hybridisierungen
- 16S rRNA Analysen
- Whole Genome Shotgun Sequencing
Funktionelle metagenomische Ansätze
Bei der funktionellen metagenomischen Analyse von Umweltproben steht die Identifizierung von Klonen mit bestimmten, bereits bekannten Eigenschaften im Vordergrund. Die in dieser Hinsicht aktiven Klone werden dann sequenziert und biochemisch charakterisiert. Dabei steht meist die Identifizierung von Eigenschaften im Vordergrund, die medizinische, landwirtschaftliche oder industrielle Relevanz haben. Limitierungen dieses Ansatzes ergeben sich aus der mitunter problematischen Expression von Fremdproteinen (heterologe Expression) in dem benutzten „Gastorganismus“ (meist Escherichia coli) sowie in der durch den Restriktionsverdau der genomischen DNA vor der Klonierung (s.o.) nicht immer gewährleisteten räumlichen Ansammlung („Clustering“) aller für die Ausprägung einer bestimmten Eigenschaft benötigten Gene. Außerdem benötigt man einen einfachen und in großer Stückzahl durchführbaren Versuchsaufbau für die Identifizierung der gewünschten Eigenschaft, da die Frequenz von aktiven Klonen in der Regel sehr gering ist.
Sequenzorientierte metagenomische Ansätze
Während Methoden wie PCRs oder in situ-Hybridisierungen auf der Basis bestimmter, bekannter DNA-Sequenzen durchgeführt werden, bietet die direkte Extraktion, Klonierung und Sequenzierung von genomischer DNA den Vorteil der potentiellen Isolierung von allen in den Organismen vorkommenden Genen. Die Isolierung erfolgt dabei unabhängig von der Sequenz oder der Funktion der Gene und ermöglicht somit auch die Identifizierung von bisher völlig unbekannten Genen mit geringer oder gänzlich fehlender Sequenzhomologie zu bereits existierenden Genen. Ferner ermöglicht dieser sequenzorientierte Ansatz auch die Identifizierung von sogenannten Operons, also räumlich auf der genomischen DNA zusammenhängenden Ansammlungen von Genen, die in einem funktionellen Zusammenhang stehen und z. B. für die Komponenten bestimmter Signalwege oder Synthesewege kodieren, wie z. B. für Enzyme zur Herstellung von Antibiotika. Natürlich ist ein weiteres Ziel dieser sequenz-orientierten metagenomischen Ansätze auch die Aufklärung ganzer Genome durch Zusammenfügen der einzelnen Sequenzabschnitte zu einer gesamt-genomischen Sequenz mit Hilfe der Bioinformatik.
Die Möglichkeiten, die die heutigen molekularbiologischen Methoden damit bieten, insbesondere die von Craig Venter mit der Sequenzierung des humanen Genoms eingeführte Methode des "Whole Genome Shotgun Sequencing”, werden eindrucksvoll durch das ebenfalls von Venter et al. 2004 durchgeführte Metagenomik-Projekt “Sargasso-See”, einem Gebiet in der Nähe des Bermudadreiecks, aufgezeigt. Das Sargossa-See-Projekt stellte den öffentlichen Datenbanken mehr als 1,6 Gb (also 1.600.000.000 Basenpaare !) in 1.045970 individuellen Einträgen auf DNA-Ebene sowie 1.001.987 Einträge potentiell translatierter Proteine zur Verfügung. Mit den Ergebnissen aus dem von Venter et al. abgeschlossenen Projekt wurde die Größe der öffentlichen Protein-Datenbank mit einem Schlag verdoppelt. Venter et al. identifizierten mehr als 69.000 neue Gene ohne erkennbare Homologie zu bisher bekannten Genen. Dies entspricht einem Anteil von 7 % bezogen auf die Gesamtzahl der von Venter annotierten Gene. Im Schnitt werden mit jeder Sequenzierung eines neuen Genoms etwa 15-20 % neue Proteinsequenzen ermittelt. Betrachtet man Venters Daten in Bezug auf die Artenvielfalt, so konnten in den untersuchten Proben mindestens 1800 Spezies unterschieden werden. Es ist allerdings davon auszugehen, dass das Biotop noch weitaus mehr Arten beherbergt.
Andere in der Planung befindliche Metagenomics-Projekte haben z. B. zum Ziel, die Zusammensetzung mikrobieller Organismen in urbaner Luft (Venter et al.) oder die Zusammensetzung der oralen mikrobiellen Lebensgemeinschaft zu analysieren (National Institute of Dental and Craniofacial Research).
Diese Zahlen unterstreichen eindrucksvoll die Dimension des noch unergründeten Anteils der Welt der Mikroorganismen und zeigen, dass wir gerade beginnen, an der Oberfläche der mikrobiellen Vielfalt zu kratzen. Sie bekräftigen, dass wir noch weit entfernt von einem vollständigen Verständnis der ökologischen Zusammenhänge in der mikrobiellen Welt sind, die, wenngleich zwar meist nicht wahrgenommen, dennoch die Basis für sämtliches Leben darstellt und für die in der Natur unerlässlichen organischen und anorganischen Stoffkreisläufe unverzichtbar sind.
Literatur
- W. R. Streit und R. A. Schmitz: Metagenomics - the key to the uncultured microbes. In: Curr Opin Microbiol. 7. 2004, S. 492–498
- J. C. Venter et al.: Environmental Genome Shotgun Sequencing of the Sargasso Sea. In: Science. 304. 2004, S. 66–74