Sympatrische Artbildung

Als sympatrische Artbildung (auch: sympatrische Speziation oder sympatrische Artentstehung) bezeichnet man das Entstehen neuer Arten im Gebiet der Ursprungsart(en). Der Begriff wurde durch den Evolutionsbiologen Ernst Mayr geprägt.

Sympatrische Artbildung und Genfluss

Bei sympatrischer Artbildung kann, ähnlich wie bei allopatrischer Artbildung, genetische Isolation eine wichtige Rolle spielen (Beispiel: Bei Artbildung durch Polyploidisierung wird der Genfluss unterbrochen). Seit langem wird kontrovers diskutiert, ob Artbildung ohne Unterbrechung des Genflusses (d.h. ohne Isolation) überhaupt stattfinden kann. Einige (vor allem ältere) theoretische Modelle sagen voraus, dass eine Artbildung ohne vorherige Isolation nicht stattfinden kann. Doch inzwischen gibt es erweiterte Modelle, die eine sympatrische Artbildung auch ohne Unterbrechung des Genflusses vorhersagen, wenn zwei Bedingungen erfüllt sind:

  • starke Selektion
  • die Wahl des Sexualpartners muss mit jenem Faktor korreliert sein, der die Selektion bedingt. [1]

Neben den theoretischen Voraussagen dieser Modelle gibt es eine wachsende Zahl von Publikationen, die darauf hinweisen, dass es sympatrische Artbildung mit Genfluss nicht nur theoretisch sondern auch real gibt:

Ein erster Typ von Hinweisen auf sympatrische Artbildung kommt von Studien, die Differenzierungen innerhalb von Arten untersuchen. Solche Studien konnten zeigen, dass eine genetische Differenzierung in verschiedene Ökotypen oder Morphen innerhalb derselben Art, also eine Vorstufe zur Artbildung, auch ohne geographische Isolation entstehen kann. Bei solchen Studien kann man möglicherweise Arten beim Entstehungsprozess beobachten.

Ein zweiter Typ von Hinweisen auf sympatrische Artbildung kommt von Studien, die bereits differenzierte Schwesterarten untersuchen. Bei diesen Arten liegt die Artaufspaltung bereits in der Vergangenheit. Damit man allopatrische Artbildung weitgehend ausschließen und sympatrische Artbildung wahrscheinlich machen kann, untersucht man Schwesterarten, die auf ein kleines gemeinsames Verbreitungsgebiet beschränkt sind und bei deren in der Vergangenheit liegender Artaufspaltung keine geographischen Barrieren vorhanden waren.

Beispiele für sympatrische Diversifizierung innerhalb einer Art (Arten im Entstehen)

Vögel

Beim Mittel-Grundfink wurden zwei Morphen mit unterschiedlich großen Schnäbeln beobachtet, deren Weibchen sich vorzugsweise mit Männchen der gleichen Morphe verpaaren. Als Ursache für diese „Vorliebe“ bei der Partnerwahl wurden Gesangsunterschiede aufgrund der unterschiedlichen Schnabelgrößen angegeben. [2]

Bei der Mönchsgrasmücke entwickelte sich im Lauf der letzten Jahrzehnte eine neue Population, die auf den Britischen Inseln überwintert, anstatt die traditionellen Winterquartiere (Nordafrika, Südspanien) aufzusuchen.[3] Ein möglicher Grund für dieses Verhalten wird in der Winterfütterung von Singvögeln gesehen, die in Großbritannien besonders beliebt ist. Es konnte mit Isotopenanalysen gezeigt werden, dass beide Populationen reproduktiv voneinander isoliert sind, obwohl sie sich weder morphologisch noch im Verhalten sonst unterscheiden. Klar ist aber (aus anderen Zugvogelforschungen), dass Hybriden zwischen ihnen eine intermediäre Zugroute einschlagen würden, die sie von Mitteleuropa hinaus auf den offenen Atlantik führen würde. Ein möglicher Isolationsmechanismus zwischen den Populationen könnte die leicht verschobene Brutperiode darstellen.

Beispiele für abgeschlossene sympatrische Artbildung

Kentia-Palmen

Bei der sympatrischen Artbildung auf der isoliert liegenden Lord-Howe-Insel sind zwei Palmenarten aus einer Ausgangsart entstanden. Anpassung an unterschiedliche Substrate und Verschiebung des Blühzeitraums spielten in diesem Fall eine wichtige Rolle [4].

Fische

Sympatrische Artbildung findet sich bei Buntbarschen in isolierten Seen, z. B. im Apoyo-Kratersee (Nicaragua) [5] und im Barombi Mbo [6] und Bermin-Kratersee (Kamerun) [7]. Die Buntbarscharten dieser Seen stammen von jeweils einer eingewanderten Art ab, unterscheiden sich aber heute deutlich in ihrer Morphologie und ökologischen Nische. Eine allopatrische Artbildung kann in diesen kleinen Kraterseen ausgeschlossen werden.

Sympatrische Artbildung durch homoploide Hybridisierung

Phytophage Bohrfliegen treffen ihre Paarungspartner auf Ihrer Wirtspflanze. Eine einwandernde Pflanzenart bietet Bohrfliegen-Hybriden eine neue Nahrungsgrundlage und ist gleichzeitig ein separater Treffpunkt für die neue hybridogene Bohrfliegen-Art. [8]

Im Gegensatz zu den Beispielen im folgenden Abschnitt (Polyploidisierung) ist bei den Bohrfliegen-Hybriden die Zahl der Chromosomen nicht erhöht (homoploid). Die sympatrische Artbildung mit Wechsel auf einen neuen Wirt kann auch als Grenzfall zu einer sehr kleinräumigen allopatrischen Artbildung verstanden werden.

Sympatrische Artbildung durch Polyploidisierung

Es werden zwei Formen der Artbildung durch Polyploidisierung unterschieden:

  1. Allopolyploidisierung: (allo = verschieden) Nach einer Artkreuzung (oder auch Gattungskreuzung), die normalerweise zu unfruchtbaren (sterilen) Mischlingen führt, entsteht durch (zufällige) Verdoppelung des Chromosomenbestandes (Genom-Mutation) ein polyploides Lebewesen, das normale Fruchtbarkeit zeigt und tetraploid (vier Chromosomensätze) oder auch amphidiploid (d. h. aus zwei verschiedenen doppelten Chromosomensätzen bestehend) heißt. Beispiele: Kulturweizen, Jostabeere
  2. Autopolyploidisierung: (auto = selbst) Hier erfolgt die Verdoppelung des Chromosomensatzes ohne eine vorhergehende Artkreuzung. Die Nachkommen sind streng tetraploid (hier: vier gleiche Chromosomensätze). Beispiel: Tetra-Roggen

Artbildung durch Polyploidisierung ist ein schlagartiger Isolationsvorgang, der von Individuen ausgeht und zu neuen Arten führt, die mit den Ausgangsformen nicht fruchtbar kreuzbar sind. Diese Artbildung spielt nur in der Pflanzenwelt eine größere Rolle, da es bei polyploiden Tieren fast immer zu Störungen in der Geschlechtsausbildung kommt.

Ein häufiger Fall bei der Artbildung von Pflanzen geht von Arten aus, die sich normalerweise nur asexuell vermehren, bei denen es aber selten und ausnahmsweise zu fruchtbaren Kreuzungen kommen kann. Jede Art besteht hier aus den Nachkommen einer solchen Kreuzung (sie ist also ein Klon). Dieser Artbildungsmechanismus führt sehr rasch zu einer Aufspaltung in sehr zahlreiche, meist mehr oder weniger lokal verbreitete Arten, die untereinander sehr ähnlich sein können. Diese werden in der Botanik häufig "Kleinarten" genannt. Die Artbildung nach diesem Muster hat einen erheblichen Prozentsatz der Pflanzenarten Mitteleuropas erzeugt, wobei diese Kleinarten häufig nur von wenigen Spezialisten bestimmbar sind. Die in Mitteleuropa sehr artenreichen und notorisch bestimmungskritischen Gattungen Brombeere (Rubus), Löwenzahn (Taraxacum) und Habichtskraut (Hieracium) verdanken ihre Artenfülle diesem Mechanismus.

Quellen

  •  W. K. Purves, D. Sadava, G. H. Orians, H. C. Heller (Hrsg.): Arten und ihre Entstehung. In: Biologie. 7. Auflage. Spektrum akademischer Verlag, ISBN 978-3-8274-2007-7, S. 585–588.
  1. G. F. Turner, M. T. Burrows: A Model of Sympatric Speciation by Sexual Selection Proceedings of the Royal Society B, 260(1359), S.287-292 doi:10.1098/rspb.1995.0093
  2. Sarah K. Huber: Reproductive isolation of sympatric morphs in a population of Darwin's finches. Proceedings of the Royal Society B, online publiziert am 15. Mai 2007, doi:10.1098/rspb.2007.0224
  3. Bearhop, S. et al. (2005): Assortative Mating as a Mechanism for Rapid Evolution of a Migratory Divide. Science 310: 502-504. online unter www.sciencemag.org (Registrierung erforderlich)
  4. V. Savolainen, M. C. Anstett, C. Lexer, I. Hutton, J. J. Clarkson, M. V. Norup, M. P. Powell, D. Springate, N. Salamin, W. J. Baker: Sympatric speciation in palms on an oceanic island Nature 441(7090):210-213 doi:10.1038/nature04566
  5. Marta Barluenga, Kai N. Stölting, Walter Salzburger, Moritz Muschick, Axel Meyer: Sympatric speciation in Nicaraguan crater lake cichlid fish Nature 439 :719-723 doi:10.1038/nature04325
  6. Ulrich K. Schliewen, Barbara Klee: Reticulate sympatric speciation in Cameroonian crater lake cichlids Frontiers in Zoology 2004, 1:5 doi:10.1186/1742-9994-1-5
  7. Ulrich K. Schliewen, Diethard Tautz, Svante Pääbo: Sympatric speciation suggested by monophyly of crater lake cichlids Nature 368, 629 - 632 doi:10.1038/368629a0
  8. Dietmar Schwarz, Benjamin M. Matta, Nicole L. Shakir-Botteri, Bruce A. McPheron: Host shift to an invasive plant triggers rapid animal hybrid speciation Nature 436, 546-549 doi:10.1038/nature03800

Siehe auch

Diese Artikel könnten dir auch gefallen

Die News der letzten 7 Tage

31.07.2021
Ökologie | Neobiota
Teure Invasoren
Wissenschaftlerinnen haben die durch invasive Arten entstandenen Kosten in Europa und Deutschland untersucht.
31.07.2021
Anthropologie | Neurobiologie
Lernpausen sind gut fürs Gedächtnis
Wir können uns Dinge länger merken, wenn wir während des Lernens Pausen einlegen.
31.07.2021
Botanik | Immunologie | Parasitologie
Eichenwälder widerstandsfähiger machen
Kahlgefressene Eichen sind ein Bild, das in den letzten Jahren immer wieder zu sehen war. Verursacher sind häufig die massenhaft auftretenden Raupen des Eichenwicklers.
29.07.2021
Ökologie | Toxikologie
Wasser blau – Badestrand grün
Viele klare Seen der Welt sind von einem neuen Phänomen betroffen: In Ufernähe, wo Menschen spielen oder schwimmen, ist der Seeboden mit grünen Algenteppichen bedeckt.
29.07.2021
Anatomie | Paläontologie
Patagonischer Langhalssaurier neu beleuchtet
Ein Team der Bayerischen Staatssammlung für Paläontologie und Geologie (SNSB-BSPG) untersuchte im Rahmen einer Neubeschreibung die Überreste des Langhalssauriers Patagosaurus fariasi (175 Mio Jahre) aus Argentinien.
29.07.2021
Anthropologie | Virologie | Bionik, Biotechnologie, Biophysik
Hochwirksame und stabile Nanobodies stoppen SARS-CoV-2
Ein Forscherteam hat Mini-Antikörper entwickelt, die das Coronavirus SARS-CoV-2 und dessen gefährliche neue Varianten effizient ausschalten.
29.07.2021
Zytologie | Biochemie
Pflanzen haben ein molekulares „Gedächtnis“
Wie eine Pflanze wächst, hängt einerseits von ihrem genetischen Bauplan ab, zum anderen aber davon, wie die Umwelt molekulare und physiologische Prozesse beeinflusst.
29.07.2021
Ökologie | Bionik, Biotechnologie, Biophysik | Meeresbiologie
Forschungsfahrt: Hydrothermale Wolken in der Nähe der Azoren
Sie entstehen, wenn von glühendem Magma aufgeheizte Lösungen aus der Erdkruste in der Tiefsee austreten und auf kaltes Meerwasser treffen: Hydrothermale Wolken stecken voller Leben, sie versorgen die Ozeane mit Nährstoffen und Metallen.
28.07.2021
Physiologie | Bionik, Biotechnologie und Biophysik
Spurensuche im Kurzzeitgedächtnis des Auges
Was wir sehen, hinterlässt Spuren: Mit schnellen Bewegungen, sogenannten Sakkaden, springt unser Blick zwischen verschiedenen Orten hin und her, um möglichst scharf abzubilden, was sich vor unseren Augen abspielt.
27.07.2021
Bionik, Biotechnologie und Biophysik
Neue Möglichkeiten: Topologie in der biologischen Forschung
Ein aus Quantensystemen bekanntes Phänomen wurde nun auch im Zusammenhang mit biologischen Systemen beschrieben: In einer neuen Studie zeigen Forscher dass der Begriff des topologischen Schutzes auch für biochemische Netzwerke gelten kann.
27.07.2021
Anthropologie | Neurobiologie
Viel mehr als Gehen
Jahrzehntelang dachte man, dass ein Schlüsselbereich des Gehirns lediglich das Gehen reguliert.
26.07.2021
Ökologie | Paläontologie
Uralte Haizähne geben Hinweis auf eine globale Klimakrise
Die stete Drift der Kontinente formt nicht nur Gebirgszüge, sondern hat auch großen Einfluss auf die Tierwelt im Meer.
26.07.2021
Anatomie | Bionik, Biotechnologie und Biophysik | Bioinformatik
Wie tierische Sprinter enorme Spitzengeschwindigkeiten erreichen
Eine interdisziplinäre Forschungsgruppe hat ein physikalisches Modell entwickelt, um zu erforschen, von welchen Eigenschaften die maximale Laufgeschwindigkeit bei Tieren abhängig ist.
26.07.2021
Anthropologie | Zoologie | Ethologie
Hunde als „Gedankenleser“
Dass Hunde vielfach als der „beste Freund des Menschen“ bezeichnet werden, ist bekannt.
26.07.2021
Mikrobiologie | Genetik | Biochemie
RNA kontrolliert die Schutzhülle von Bakterien
Der Magenkeim Helicobacter pylori weiß, wie er sich gegen Angriffe des Immunsystems oder durch Antibiotika schützen kann.