Tetracyanoethylen


Strukturformel
Struktur von Tetracyanoethylen
Allgemeines
Name Tetracyanoethylen
Andere Namen
  • TCNE
  • Ethentetracarbonitril
  • Percyanoethen
Summenformel C6N4
Kurzbeschreibung

rein: farblos, handelsüblich: beige bis gelbliche Masse[1][2]

Externe Identifikatoren/Datenbanken
CAS-Nummer 670-54-2
PubChem 12635
Wikidata [[:d:Lua-Fehler in Modul:Wikidata, Zeile 865: attempt to index field 'wikibase' (a nil value)|Lua-Fehler in Modul:Wikidata, Zeile 865: attempt to index field 'wikibase' (a nil value)]]
Eigenschaften
Molare Masse 128,09 g·mol−1
Aggregatzustand

fest

Dichte

1,35 g·cm−3[2]

Schmelzpunkt

201–202 °C[1]

Siedepunkt

223 °C[2]

Löslichkeit
  • hydrolysiert in Wasser[2]
  • löslich in Dichlormethan[3]
Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung [2]
Gefahrensymbol

Gefahr

H- und P-Sätze H: 300
P: 264​‐​280​‐​301+310 [4]
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.

Tetracyanoethylen - auch abgekürzt TCNE (TetraCyaNoEthylen) - ist eine hygroskopische organische Verbindung aus der Stoffgruppe der Nitrile und hat eine flache, ebene Struktur.

Darstellung und Reaktionen

Tetracyanoethylen wird durch Bromierung von Malonsäuredinitril in Gegenwart von Kaliumbromid hergestellt, wobei ein Kaliumbromid-Komplex erhalten wird, der anschließend mit Kupferpulver in der Hitze dehalogeniert wird.[5][1]

$ \mathrm {4\ H_{2}C(CN)_{2}\ {\xrightarrow[{H_{2}O,\ \Delta }]{8\ Br_{2},\ KBr}}\ KBr+[Br_{2}C(CN)_{2}]_{4}} $
$ \mathrm {KBr+[Br_{2}C(CN)_{2}]_{4}\ {\xrightarrow[{-KBr,\ CuBr_{2}}]{Cu,\ \Delta }}\ (CN)_{2}C=C(CN)_{2}} $

Oxidation von Tetracyanoethylen mit Wasserstoffperoxid führt zum entsprechenden Epoxid, welches für ein Epoxid ungewöhnliche chemische Eigenschaften aufweist.[3]

$ \mathrm {(CN)_{2}C=C(CN)_{2}\ {\xrightarrow[{-4\ bis\ 10\ ^{\circ }C}]{H_{2}O_{2},\ CH_{3}CN}}\ (CN)_{2}C{\frac {\diagup O\diagdown }{}}C(CN)_{2}} $

Eigenschaften

Tetracyanoethylen sublimiert bei 130–140 °C und 0,133 hPa.[1]

TCNE wird oft als Elektronenakzeptor eingesetzt. Cyanogruppen weisen $ \pi $*-Orbitale mit niedriger Energie auf, und die Gegenwart von vier solchen Gruppen, deren $ \pi $-Systeme durch die zentrale C=C-Doppelbindung verbunden (konjugiert) sind, ergibt einen hervorragenden Elektronenakzeptor. So reagiert TCNE mit Iodiden unter Bildung des Radikalanions.

$ \mathrm {(CN)_{2}C=C(CN)_{2}+I^{-}\ \xrightarrow {} \ [(CN)_{2}C=C(CN)_{2}]^{-}+{\dfrac {1}{2}}I_{2}} $

Verwendung

Wegen der Planarität des Moleküls und seiner Fähigkeit, leicht Elektronen aufzunehmen, ist TCNE auch verwendet worden, eine Reihe organischer Supraleiter herzustellen - üblicherweise als ein-Elektron-Oxidationsmittel für einen organischen Elektrondonator. Solche Charge-Transfer-Komplexe werden manchmal Bechgaard Salze genannt.

Sicherheit

TCNE hydrolysiert in Wasser und an feuchter Luft zu sehr giftiger Blausäure. Entsprechende Vorsichtsmaßnahmen sollten beim Umgang mit der Substanz eingehalten werden.

Einzelnachweise

  1. 1,0 1,1 1,2 1,3 R. A. Carboni: Tetracyanoethylene, Organic Syntheses, Coll. Vol. 4, 877, 1963.
  2. 2,0 2,1 2,2 2,3 2,4 2,5 2,6 Datenblatt Tetracyanoethylen bei Merck
  3. 3,0 3,1 W. J. Linn: Tetracyanoethylene Oxide, Organic Syntheses, Coll. Vol. 5, 1007, 1973.
  4. Datenblatt Tetracyanoethylene bei Sigma-Aldrich (PDF). Angabe des Markenparameters in Vorlage:Sigma-Aldrich fehlerhaft bzw. nicht definiertVorlage:Sigma-Aldrich/Abruf nicht angegeben
  5. The Merck Index. An Encyclopaedia of Chemicals, Drugs and Biologicals, 14. Auflage, 2006, ISBN 978-0-911910-00-1, S. 1582.