Turbulenzmodell
Ein Turbulenzmodell dient in der numerischen Strömungssimulation zur Schließung des zugrundeliegenden Gleichungssystems.
Da Turbulenz sowohl räumlich als auch zeitlich auf sehr unterschiedlichen und vor allem auch sehr kleinen Skalen stattfindet, werden zur korrekten Auflösung aller Phänomene extrem feine Gitter und Zeitschritte benötigt, wie dies in der direkten numerischen Simulation (DNS) geschieht.
Die DNS ist aufgrund ihres extremen Rechenaufwands auf absehbare Zeit auf niedrige (und damit für praktische Anwendungen häufig wenig interessante) Reynolds-Zahlen beschränkt. Aus diesem Grund werden unterschiedliche Strategien zur Verringerung des Rechenaufwandes verwendet. Je mehr Annahmen dabei getroffen werden, desto geringer wird in der Regel die Rechenzeit und desto größer werden die Unsicherheiten bezüglich des Ergebnisses.
Statistische Modellierung
Die derzeit am weitesten verbreitete Modellierungsstrategie ist die statistische Modellierung (auch: Reynolds Averaged Navier Stokes (RANS)). Dabei wird die turbulente Strömung im einfachsten Fall als zeitlicher Mittelwert
einen zusätzlichen Term mit zusätzlichen Variablen
Wirbelviskositätsmodelle
Bei den Wirbelviskositätsmodellen wird der Reynoldssche Spannungstensor nach der Hypothese von Boussinesq approximiert. Hierbei werden die Reynolds-Spannungen in Analogie zu den durch molekulare Viskosität hervorgerufenen Spannungen behandelt:
.
Die Größe
Aus Dimensionsgründen lässt sich die turbulente Wirbelviskosität
Die Wirbelviskositätsmodelle werden nach der Anzahl der unabhängigen Turbulenzvariablen, die zur Berechnung von
Nullgleichungsmodelle
Algebraische- oder Nullgleichungsmodelle verwenden zur Schließung nur algebraische Beziehungen. Hierzu zählen das Baldwin-Lomax-Modell und das Turbulenzmodell nach Cebeci und Smith.
Eingleichungsmodelle
Eingleichungsmodelle benutzen eine zusätzliche Transportgleichung zur Bestimmung von
Die beiden Terme hinter der eckigen Klammer beschreiben die Turbulenzdestruktion und die Turbulenzproduktion. Nachteilig ist bei diesem Turbulenzmodell die Unfähigkeit schnelle Änderungen im turbulenten Längenmaß, wie sie beim Übergang einer Grenzschicht in eine freie Scherschicht auftreten, richtig vorherzusagen
Zweigleichungsmodelle
Zweigleichungs-Turbulenzmodelle sind ein Schließungsansatz, der aus der Lösung zweier gekoppelter Transportgleichungen besteht. Man unterscheidet die Modelle anhand der verwendeten Turbulenzgrößen. Zwei große Gruppen sind z. B. die
Standard k-ε-Turbulenzmodell
Das
und
In die oben genannten Gleichungen sind einige, zum Teil erheblich vereinfachende Modellannahmen eingeflossen. Dies schränkt den Gültigkeitsbereich und somit den Anwendungsbereich deutlich ein. In den Gleichungen tauchen noch unbekannte Koeffizienten auf. Diese werden durch die Betrachtung einfacher Strömungsfelder ermittelt. Der Parameter
Für das Standard
Die Art der Bestimmung der Konstanten bezeichnet die Strömungsfelder, in denen das Modell gute Übereinstimmung mit Messungen liefern sollte.
Nichtlineare k-ε-Turbulenzmodelle
Das Standard
V2F-Turbulenzmodell
Die Turbulenz in der Nähe von Wänden ist gekennzeichnet durch Inhomogenität und
Anisotropie. Die Zweigleichungsmodelle, wie
und
Für das wandnormale Geschwindigkeitsmaß wird die zusätzliche Gleichung
formuliert. Der Term
Die im Model auftretenden Längen- und Zeitmaße sind:
mit
und
Der Koeffizient
Die Modellkonstante
zwischen diesen beiden Werten interpoliert. Die anderen Modellkonstanten sind gegeben mit:
k-ω-Turbulenzmodell
Ein weiteres weitverbreitetes Zweigleichungs-Turbulenzmodell ist das von Wilcox angegebene
Das
k-ω-SST Turbulenzmodell
Das
Treten in der Strömung zusätzliche Phänomene (Verbrennung, Partikel, Tropfen, Überschall, usw.) auf, so müssen auch die damit verbundenen Größen (bspw. Dichte, Temperatur, Massenbrüche, etc.) gemittelt werden. In den dazugehörigen Transportgleichungen treten dabei analoge Schliessungsprobleme auf.
Large Eddy Simulation
Anstelle der zeitlichen Mittelung tritt bei der Large Eddy Simulation eine zeitliche und räumliche Tiefpassfilterung. Dies hat zur Folge, dass die großskaligen Phänomene transient simuliert werden, während der Beitrag der kleinskaligen Phänomene weiterhin modelliert werden muss.
Obwohl verwandte Modellierungsprobleme auftreten, verspricht die LES bei höherem Rechenaufwand eine bessere Beschreibung der Turbulenz als die statistischen Methoden, weil zumindest ein Teil der turbulenten Schwankungen wiedergegeben wird.
Detached Eddy Simulation
Die Detached Eddy Simulation (DES) wurde erstmals 1997 von P. Spalart veröffentlicht. Sie basiert in ihrer ursprünglichen Form auf dem Turbulenzmodell von Spalart-Allmaras (eine Transportgleichung), es wird aber auch an der Anwendung in Verbindung mit anderen Modellen geforscht.
Die DES ersetzt den Wandabstand, der als Variable im Spalart-Allmaras-Modell vorkommt, in wandfernen Bereichen durch die größte Weite einer Gitterzelle. Durch diese Formulierung lässt sich in den wandfernen Bereichen ein LES-ähnliches Verhalten der Rechnung erreichen. De facto erhält man so also eine RANS-Formulierung in der Grenzschicht und eine LES Formulierung in der freien Strömung, also das im jeweiligen Bereich am besten geeignete Verfahren (bezüglich Genauigkeit und Rechenaufwand).
Da RANS und LES unterschiedliche Anforderungen an das Gitter stellen, hat das Erstellen eines geeigneten, in entsprechende Zonen unterteilten Gitters einen großen Einfluss auf den Erfolg der Rechnung. Dasselbe gilt für die verwendeten numerischen Methoden. Diese sind aber meist gezwungenermaßen im gesamten Rechengebiet dieselben, was teilweise zu Kompromissen bezüglich der Genauigkeit führt.
Literatur
- Michael Breuer: Direkte Numerische Simulation und Large-Eddy Simulation turbulenter Strömungen auf Hochleistungsrechnern. 1. Auflage. Shaker, Aachen 2002, ISBN 3-8265-9958-6.
- Herbert Oertel jr., Eckart Laurien: Numerische Strömungsmechanik. 2. Auflage. Vieweg, Braunschweig / Wiesbaden 2003, ISBN 3-528-03936-1.
- Jochen Fröhlich: Large Eddy Simulation turbulenter Strömungen. 1. Auflage. Teubner, Wiesbaden 2006, ISBN 3-8351-0104-8.
Einzelnachweise
- ↑ Zum Beispiel in: J. H. Ferziger, M. Perić: Computational Methods for Fluid Dynamic, 3rd Edition, 2002