Visuelles System

Datei:Sehsystem.png
Sehsystem des Menschen. Zur Veranschaulichung der Verarbeitungswege ist ein Ikosaeder nach den einzelnen Verarbeitungsphasen schematisch dargestellt.

Das visuelle System ist der Teil eines Nervensystems, der mit der Verarbeitung von visueller Information beschäftigt ist. Das visuelle System umfasst das Auge mit Netzhaut (Retina), den Sehnerv, Teile des Thalamus und des Hirnstamms sowie die Sehrinde.

Optischer Apparat

Abbildungsschärfe auf der Netzhaut des rechten Auges (horizontaler Schnitt).
Schematischer Querschnitt durch das rechte Auge. Deutlich ist die Sehgrube (Fovea) zu sehen.

Der optische Apparat des Auges (durchsichtige Hornhaut, Augenkammern, Iris, Linse, Glaskörper) erzeugt auf der Netzhaut ein auf dem Kopf stehendes und seitenverkehrtes Bild der Umgebung im Gesichtsfeld.

Die Fovea ist die Stelle mit der größtmöglichen Abbildungsschärfe. Das Auge kann aber nur während der Verweildauer von etwa 0,2 bis 0,3 Sekunden auf einem solchen Fixationspunkt verharren (Optokinetischer Nystagmus).[1]

Von der Fovea geht rund die Hälfte des Sehnervs (unten in Gelb) zum Sehzentrum. Die restliche Hälfte des Sehnervs sind für das periphere System reserviert, das bis zu 90 komprimierte Bilder des Sehfelds pro Sekunde erfasst.

Sehbahn

Darstellung des Auges durch Leonardo da Vinci. Er schrieb zu seiner Zeichnung: „Das Auge hat eine einzige Zentrallinie, und alle Dinge, welche durch diese Linie zum Auge gelangen, werden gut gesehen.“[2]

Hauptartikel: Sehbahn

Die Lichtreize werden von den Sinneszellen der Retina, den Stäbchen und Zapfen, registriert. Sie bilden ein Membranpotential, das über bipolare Zellen an Ganglienzellen weitergeleitet wird, wo Aktionspotentiale ausgelöst werden. Die Fortsätze der Ganglienzellen bilden den II. Hirnnerv (Nervus opticus), der die Aktionspotentiale weiterleitet.

Die Sehbahn leitet die Aktionspotentiale zur Sehrinde: Nach Eintritt in die Schädelhöhle kreuzen die Nervi optici beider Augen in der Sehnervenkreuzung (Chiasma opticum). Ungekreuzt verlaufen die äußeren (temporalen) Fasern weiter, während die inneren (nasalen) zur Gegenseite kreuzen. Auf die Weise verlaufen die Fasern der linken Netzhauthälfte beider Augen in die linke Hirnhälfte und die der rechten Netzhauthälften in die rechte. In den beiden Tractus optici verlaufen diese Nervenfasern zu den Seitlichen Kniehöckern Corpus geniculatum laterale des Thalamus, von wo sie über die breit gefächerte Sehstrahlung (Radiatio optica) zur Sehrinde (visueller Cortex) weitergeleitet werden.

Visuelle Wahrnehmung

Visuelle Wahrnehmung bedeutet – über das reine „Sehen“ hinausgehend – eine „explizite symbolische Beschreibung der beobachteten Szene“ [3] Dazu wird das auf der Netzhaut durch den optischen Apparat projizierte Bild der Szene bereits in der Netzhaut analysiert (Helligkeit, Farbe, Kontraste, Bewegung) und bearbeitet (Helligkeitsausgleich, Kontrastverstärkung). Bei der Weiterleitung über Sehnerven und Kniehöcker bleiben die räumlichen Lagebeziehungen der Rezeptoren in den Lagebeziehungen der Nervenbahnen und Synapsen erhalten (so genannte Retinotopie). Diese Lagebeziehung ist im visuellen Cortex als neuronale Karte nachweisbar. Die Aktivität der Nervenzellen dieser Karte repräsentiert die Wahrnehmung der Szene, allerdings in verzerrter Form: Linke und rechte Hälfte sind voneinander getrennt in der rechten und linken Hirnhälfte, das Zentrum der Szene (Fixationspunkt) als wichtigster Bestandteil der Szene, ist durch eine größere Region repräsentiert als der Rand.

Das Erkennen von einzelnen Elementen und ihrer Bedeutung erfolgt wahrscheinlich durch Vergleich mit bereits gespeicherten Erfahrungen (Szenen verknüpft mit Körpergefühl, Emotionen, Geruch, Geräusche und vieles andere mehr).

Augenreflexe

Mit der Sehbahn verknüpft sind die Nervenbahnen der Augenreflexe. Reflexe, die das automatische Fixieren von statischen oder bewegten Objekten steuern, nutzen die bereits verarbeiteten räumlichen Informationen aus der Sehrinde.

Schutzreflexe

  • Pupillenreflex – Ausgleich von abrupten Hell-Dunkel-Wechsel durch Veränderung der Öffnungsweite der Pupille.
  • Lidschlussreflex zum Schutz vor grellem Licht, austrocknendem Luftzug und anfliegenden Fremdkörpern.

Fixierungsreflexe

  • Akkommodation: Anpassung der optischen Eigenschaften der Linsen an die Entfernung des fokussierten Objekts durch Veränderung der Linsenkrümmung
  • Konvergenz: Ausrichtung der Sehachsen der beiden Augen an die Entfernung des fokussierten Objekts. Bei weit entfernten Objekten sind die Achsen parallel ausgerichtet. Je näher das Objekt ist, um so mehr müssen die Augen nach innen gedreht werden. Dies erfolgt gleichzeitig durch den jeweils nasal liegenden Augenmuskel (Musculus rectus mediale).
  • Augendrehbewegung: Ausrichtung der Sehachsen zum Ausgleich von Kopfbewegungen oder bei der Verfolgung von bewegten Objekten. Dies erfolgt durch eine koordinierte Aktion der Augenmuskeln, ermöglicht durch Verbindungen zwischen den Kernen der Augenmuskeln im „Blickzentrum“ der oberen zwei Hügel des Tectums[4] (siehe auch optokinetischer Nystagmus).
  • Sakkadische Augenbewegungen (Sakkaden) sind rasche, ruckartige Augenbewegungen. Sie dienen der Ergänzung der peripheren Wahrnehmung und der bereits vorhandenen Vorstellungen. Sie treten auch beim Träumen und beim Imaginieren von visuellen Vorstellungen auf.

Referenzen

  1. Hans-Werner Hunziker: Im Auge des Lesers. Transmedia, Zürich 2006, ISBN 978-3-7266-0068-6 (Originaltitel: In the Eye of the Reader. Foveal and Peripheral Perception. From Letter Recognition to the Joy of Reading.).
  2. Quaderni d'anatomia IV fol. 12 verso, zitiert in Sandro Piantanida, Costantino Baroni (ed.), Kurt Karl Eberlein (Übersetzung): Leonardo da Vinci - Das Lebensbild eines Genies". Dokumentation der Leonardo-da-Vinci-Ausstellung in Mailand 1938. Lüttke-Verlag Berlin o.J. (1939/40). Nachdruck Emil Vollmer Verlag 1955. S. 430 http://books.google.de/books?id=qHASAQAAMAAJ&q=wirkungsloser
  3. John P. Frisby: Optische Täuschungen. Sehen, Wahrnehmen, Gedächtnis. Weltbild, Augsburg 1989 ISBN 3-926187-24-7, S. 182 f.
  4. Werner Kahle u. a.: Nervensystem und Sinnesorgane. dtv, München 1978, ISBN 3-423-03019-4 (dtv-Atlas der Anatomie. Band 3), S. 312 f.

Literatur

  • Semir Zeki: Das geistige Abbild der Welt. In: Spektrum der Wissenschaft. November 1992
  • Werner Kahle u. a.: Nervensystem und Sinnesorgane. dtv, München 1978, ISBN 3-423-03019-4 (dtv-Atlas der Anatomie. Band 3), S. 308 f.

Die News der letzten Tage

30.01.2023
Ökologie | Physiologie
Ernährungsumstellung: Die Kreativität der fleischfressenden Pflanzen
In tropischen Gebirgen nimmt die Zahl der Insekten mit zunehmender Höhe ab.
27.01.2023
Land-, Forst-, Fisch- und Viehwirtschaft | Neobiota | Ökologie
Auswirkungen von fremden Baumarten auf die biologische Vielfalt
Nicht-einheimische Waldbaumarten können die heimische Artenvielfalt verringern, wenn sie in einheitlichen Beständen angepflanzt sind.
27.01.2023
Biochemie | Botanik | Physiologie
Wie stellen Pflanzen scharfe Substanzen her?
Wissenschaftler*innen haben das entscheidende Enzym gefunden, das den Früchten der Pfefferpflanze (lat Piper nigrum) zu ihrer charakteristischen Schärfe verhilft.
26.01.2023
Biochemie | Mikrobiologie | Physiologie
Ein Bakterium wird durchleuchtet
Den Stoffwechsel eines weit verbreiteten Umweltbakteriums hat ein Forschungsteam nun im Detail aufgeklärt.
26.01.2023
Bionik, Biotechnologie und Biophysik | Botanik | Physiologie
Schutzstrategien von Pflanzen gegen Frost
Fallen die Temperaturen unter null Grad, bilden sich Eiskristalle auf den Blättern von winterharten Grünpflanzen - Trotzdem überstehen sie Frostphasen in der Regel unbeschadet.
26.01.2023
Entwicklungsbiologie | Genetik
Neues vom Kleinen Blasenmützenmoos
Mithilfe mikroskopischer und genetischer Methoden finden Forschende der Universität Freiburg heraus, dass die Fruchtbarkeit des Laubmooses Physcomitrella durch den Auxin-Transporter PINC beeinflusst wird.
26.01.2023
Klimawandel | Mikrobiologie | Mykologie
Die Art, wie Mikroorganismen sterben beeinflusst den Kohlenstoffgehalt im Boden
Wie Mikroorganismen im Boden sterben, hat Auswirkungen auf die Menge an Kohlenstoff, den sie hinterlassen, wie Forschende herausgefunden haben.
25.01.2023
Entwicklungsbiologie | Evolution
Wie die Evolution auf unterschiedliche Lebenszyklen setzt
Einem internationalen Forscherteam ist es gelungen, eines der Rätsel der Evolution zu lösen.
24.01.2023
Biochemie | Ökologie | Physiologie
Moose verzweigen sich anders... auch auf molekularer Ebene
Nicht-vaskuläre Moose leben in Kolonien, die den Boden bedecken und winzigen Wäldern ähneln.
24.01.2023
Bionik, Biotechnologie und Biophysik | Genetik
Verfahren der Genom-Editierung optimiert
Im Zuge der Optimierung von Schlüsselverfahren der Genom-Editierung ist es Forscherinnen und Forschern in Heidelberg gelungen, die Effizienz von molekulargenetischen Methoden wie CRISPR/Cas9 zu steigern und ihre Anwendungsgebiete zu erweitern.
24.01.2023
Ökologie | Zoologie
Kooperation der männlichen australischen Spinnenart Australomisidia ergandros
Forschende konnten in einer Studie zeigen, dass Männchen der australischen Spinne Australomisidia ergandros ihre erjagte Beute eher mit den anderen Mitgliedern der Verwandtschaftsgruppe teilen als die Weibchen.
24.01.2023
Bionik, Biotechnologie und Biophysik | Physiologie
Mutante der Venusfliegenfalle mit Zahlenschwäche
Die neu entdeckte Dyscalculia-Mutante der Venusfliegenfalle hat ihre Fähigkeit verloren, elektrische Impulse zu zählen.
23.01.2023
Biochemie | Physiologie
neue Einblicke in Mechanismen der Geschmackswahrnehmung
Die Komposition der Lebensmittel, aber auch die Speisenabfolge ist für das perfekte Geschmackserlebnis eines Menüs entscheidend.
19.01.2023
Biodiversität | Neobiota | Ökologie
Starke Zunahme von gebietsfremden Landschnecken
Invasive Landschneckenarten können heimische Arten verdrängen und der menschlichen Gesundheit schaden.