Wasserstoffbioreaktor

Dieser Artikel oder Abschnitt bedarf einer Überarbeitung. Hilf mit, ihn zu verbessern, und entferne anschlieVorlage:SSend diese Markierung.
Wasserstoffproduktion durch Algen im Labormaßstab

Ein Wasserstoffbioreaktor ist ein Bioreaktor, in dem die biologische Produktion von Wasserstoffgas stattfindet. Die Produktion von Wasserstoffgas kann hierbei auf verschiedene Weisen erfolgen. So können Algen unter bestimmten Bedingungen Wasserstoff erzeugen. In den späten 1990er Jahren entdeckte man dieses veränderte Verhalten der Algen bei Schwefelmangel. Die Algen stellen die Erzeugung von Sauerstoff ein und erzeugen das Wasserstoffgas. Eine andere Möglichkeit besteht in der Konstruktion eines Wasserstoffbioreaktors, dessen Basis Bakterien bilden. Hierbei besteht die Möglichkeit, ein zweistufiges System zu etablieren, in welchem thermophile Bakterien sowie Cyanobakterien Verwendung finden.

Eine Technologie dieser Art ist insofern interessant, als dass der so produzierte Biowasserstoff als klimaneutraler Energieträger verwendet werden kann. So könnte ein Algenzuchtbetrieb in der Größe von Texas genug Wasserstoff produzieren, um den weltweiten Energiebedarf zu decken. Die Wasserstoffproduktion aus einer Zucht von 25.000 Quadratkilometern könnte den gesamten Benzinverbrauch der USA ersetzen. Dies ist weniger als ein Zehntel der Fläche der Sojaproduktion der USA (Stand 2006).[1]

Geschichte

Im Jahre 1939 entdeckte der deutschstämmige Biochemiker Hans Gaffron bei Grünalgen die Fähigkeit, zeitweise Wasserstoff zu produzieren.[2] Bis dahin war angenommen worden, dass nur prokaryotische Organismen über diese Möglichkeit verfügen. Die Hintergründe dieses Prozesses konnte er allerdings nicht klären.

Um 1990 beobachtete Anastasios Melis, ein Forscher der University of Carlifornia in Berkeley, dass Schwefelmangel bei der Alge Chlamydomonas reinhardtii eine Veränderung des Photosyntheseprozesses bewirkt, welcher wiederum der von Gaffron beschriebenen Wasserstoffproduktion zugrunde liegt.

Um in der Energieerzeugung Verwendung zu finden, ist es allerdings nötig, die Wasserstoffproduktion effizienter (beziehungsweise ökonomischer) zu gestalten. So gelang es 2006 Forschen der Universitäten Bielefeld und Queensland, die Alge Chlamydomonas reinhardtii genetisch dahingehend zu verändern, dass sie gegenüber dem Wildtyp ein bis zu Fünffaches an Wasserstoff produzieren kann.

Probleme bei der Planung eines Bioreaktors

  • Behinderung der photosynthetischen Wasserstoffproduktion durch das Entstehen eines elektrochemischen Potentials
  • Durch kompetitive Hemmung wird die Erzeugung des Wasserstoffes durch Kohlendioxid behindert.
  • Für eine effiziente Photosynthese wird eine Bicarbonatverbindung benötigt.
  • Abspaltung von Elektronen
  • Der Wirkungsgrad ist sehr klein. Die normale Energieeffizienz (Umsetzung von Sonnenlicht in Wasserstoff) muss mindestens 7 bis 10 Prozent erreichen, um ökonomisch zu werden. In ihrer natürlichen Form erreichen die Algen aber nur 0,1 %.

Man versucht, diese Probleme mit Hilfe der Biotechnik zu lösen.

Untersuchung

2006 - An der Universität Karlsruhe wird ein Prototyp eines Bioreaktors gebaut, der 500-1000 Liter Algensubstrat fasst.

Literatur

Ingo Rechenberg: Photobiologische Wasserstoffproduktion in der Sahara. Werkstatt Bionik und Evolutionstechnik Band 2, Frommann-Holzboog, Stuttgart 1994, ISBN 3-7728-1643-6

Siehe auch

Weblinks

Einzelnachweise

  1. newscientist.com: Growing hydrogen for the cars of tomorrow (25. Februar 2006)
  2. Peter H. Homann: Hydrogen metabolism of green algae: discovery and early research - a tribute to Hans Gaffron and his coworkers. In: Govindjee, J.T. Beatty, H. Gest and J.F. Allen (Hrsgg.): Discoveries in Photosynthesis. In der Reihe: Advances in Photosynthesis and Respiration, Bd. 20. Springer-Verlag, S. 119 ff. ISBN 978-1-4020-3323-0

Diese Artikel könnten dir auch gefallen

Die News der letzten 7 Tage

22.10.2021
Physiologie | Toxikologie | Insektenkunde
Summ-Summ-Summ, Pestizide schwirr´n herum
Was Rapsfelder und Obstplantagen schützt, bedeutet für manche Organismen den Tod: Insektizide und Fungizide werden in der Landwirtschaft gegen Schädlinge und Pilze eingesetzt.
21.10.2021
Mikrobiologie | Genetik | Virologie
Kampf gegen Viren mit austauschbaren Verteidigungsgenen
Bakterien verändern mobile Teile ihres Erbgutes sehr schnell, um Resistenzen gegen Viren zu entwickeln.
21.10.2021
Genetik | Säugetierkunde
Endlich geklärt: Die Herkunft der heutigen Hauspferde
Pferde wurden zuerst in der pontisch-kaspischen Steppe im Nordkaukasus domestiziert, bevor sie innerhalb weniger Jahrhunderte den Rest Eurasiens eroberten.
21.10.2021
Bionik, Biotechnologie, Biophysik | Entwicklungsbiologie | Säugetierkunde
Eizellenentnahme bei einem von zwei Nördlichen Breitmaulnashörnern eingestellt
Nach einer speziellen, umfassenden ethischen Risikobewertung hat das Team nun beschlossen, das ältere der beiden verbleibenden Weibchen – die 32-jährige Najin –, als Spenderin von Eizellen (Oozyten) in den Ruhestand zu schicken.
20.10.2021
Toxikologie | Insektenkunde | Land-, Forst- und Viehwirtschaft
Verheerende Auswirkungen von Insektenvernichtungsmittel
Neonicotinoide beeinflussen menschliche Neurone und schädigen potentiell somit nicht nur Insektenzellen, sie sind synthetisch hergestellte Wirkstoffe, die zur Bekämpfung von Insekten eingesetzt werden.
19.10.2021
Biochemie | Bionik, Biotechnologie, Biophysik | Bioinformatik
Wie Künstliche Intelligenz dabei hilft, Enzymtätigkeit zu quantifizieren
Ein internationales Bioinformatikerteam entwickelte ein neues Verfahren, um die die Reaktionskinetik bestimmende Michaelis-Konstante vorherzusagen.
19.10.2021
Physiologie | Neurobiologie | Vogelkunde
Vogel-Pupillen verhalten sich anders als erwartet
Die Pupille regelt nicht nur den Lichteinfall ins Auge, sondern spiegelt den Zustand des wachen Gehirns wider.
20.10.2021
Ethologie | Neurobiologie | Säugetierkunde
Findet Rico - „den ganz besonderen Hund“
Zwei Forscherinnen sind auf der Suche nach „dem einen ganz besonderen Hund“.