Die Leckerbissen zuerst
Bio-News vom 09.03.2021
Jedes Frühjahr vermehren sich in der Nordsee massenhaft winzige Algen und geben große Mengen Zucker ins umgebende Wasser ab – ein Festmahl für Bakterien. Forschende des Max-Planck-Instituts für Marine Mikrobiologie und der Universität Greifswald haben nun die Speisenfolge dieses Festmahls untersucht: Erst vernaschen die Bakterien die leicht verdaulichen Leckerbissen, danach die zähen Brocken. Zu diesem Einblick gelangten die Forschenden, indem sie spezielle Proteine der Bakterien untersuchten, mit deren Hilfe wir den marinen Kohlenstoffkreislauf besser verstehen können.
Die jährlichen Algenblüten in der Nordsee sind wichtig für unser Klima, denn sie entziehen der Atmosphäre große Mengen an Kohlendioxid. Sie sind jedoch kurzlebig. Wenn die Algen absterben, wird der meiste Kohlenstoff ins umgebende Meerwasser abgegeben. Dort warten bereits Bakterien darauf, sicher darüber herzumachen und die Algenreste zu verzehren.
Publikation:
T. Ben Francis, Daniel Bartosik, Thomas Sura, Andreas Sichert, Jan-Hendrik Hehemann, Stephanie Markert, Thomas Schweder, Bernhard M. Fuchs, Hanno Teeling, Rudolf I. Amann, Dörte Becher
Changing expression patterns of TonB-dependent transporters suggest shifts in polysaccharide consumption over the course of a spring phytoplankton bloom
The ISME Journal 2021
DOI: 10.1038/s41396-021-00928-8
Blogpost von Ben FrancisIn früheren Studien wurde nachgewiesen, dass bei diesen Blüten von Jahr zu Jahr unterschiedliche Algenarten die Oberhand gewinnen können. Bei den Bakterien, welche die Algen wieder abbauen, herrschen dennoch alljährlich dieselben spezialisierten Gruppen vor. Offenbar bestimmen nicht die Algen selbst, sondern ihre Bestandteile – vor allem Ketten von Zuckermolekülen, die sogenannten Polysaccharide – welche Bakterien gedeihen. Die Details der bakteriellen Reaktion auf das Algenfestmahl sind bis heute nicht vollständig verstanden.
Metaproteomik: Bakterielle Proteine en gros untersuchen
Deshalb hat Ben Francis nun zusammen mit Forschenden des Max-Planck-Instituts für Marine Mikrobiologie, der Universität Greifswald und des MARUM – Zentrum für Marine Umweltwissenschaften an der Universität Bremen einen genaueren Blick auf das Innenleben der Bakterien geworfen. „Wir entschieden uns für eine Methode namens Metaproteomik, bei der wir alle Proteine in einer mikrobiellen Gemeinschaft, in unserem Fall im Meerwasser, untersuchen“, erklärt Francis. „Dabei interessierten wir uns ganz besonders für Transporterproteine. Deren Aktivität ist entscheidend, um die Aufnahme der Algenzucker in die Bakterienzellen zu verstehen.“ Die metaproteomischen Daten zeigten, dass sich die Transporterproteine im Laufe der Zeit deutlich veränderten. „Verschiedene Transporterproteine sind vermutlich für die Aufnahme verschiedener Zucker zuständig. Wir sahen eine klare Veränderung dieser Proteine im Laufe der Zeit“, so Francis weiter. „Das weist darauf hin, dass sich die Bakterien zu Beginn hauptsächlich auf die 'leicht abbaubaren' Substrate, wie Laminarin und Stärke, konzentrieren. Später greifen sie die 'schwerer abbaubaren' Polymere an, die aus Mannose und Xylose bestehen.“
Ein Zucker nach dem anderen
Mit anderen Worten: Die Bakterien nehmen zuerst den leichten Weg. Erst wenn die Leckerbissen verzehrt sind, machen sie sich über die zähen Brocken her. Wann geht dieser Wandel vonstatten? Ben Francis und seine Kolleginnen und Kollegen sehen zwei mögliche Auslöser: Entweder werden die zähen Brocken immer attraktiver je mehr der Wettbewerb um die leichten Nahrungsquellen zunimmt, weil sich die Bakterien in dieser üppigen Umgebung schnell vermehren und damit die Zellzahlen steigen. Oder aber es hängt mehr von den Algen ab: Wenn die Algenblüte zusammenbricht und immer mehr Algen sterben, sammeln sich mehr 'schwer verdauliche' Reste an, die dadurch zu einer effizient nutzbaren Nahrungsquelle werden.
Obwohl die Forschenden aus Bremen und Greifswald die Dynamik von Algen- und Bakterienblüten in der Nordsee schon lange untersuchen, war dieser zeitliche Verlauf bisher unentdeckt geblieben. „Durch die Kombination modernster Proteomik-Techniken mit Probenvorbereitungsmethoden, die speziell auf die hohe Komplexität dieser sehr anspruchsvollen Proben zugeschnitten sind, konnten wir einen der umfassendsten Proteom-Datensätze mit mehr als 20.000 Proteingruppen erstellen. Diese Daten zeigten, dass sich die Substratspezifität der Transporterproteine im Laufe der Zeit verändert. Diese Veränderungen waren in dem entsprechenden metagenomischen Datensatz, an dem die Vielfalt der Bakterien untersucht wurde, nicht sichtbar“, sagt Dörte Becher von der Universität Greifswald. „Das zeigt deutlich, dass wir sehr tief graben müssen, um die zugrunde liegenden ökologischen Prozesse zu verstehen, die den marinen Kohlenstoffkreislauf steuern.“ Die Quantifizierung von Transporterproteinen könnte also ein wichtiges Stück zur Lösung des hochkomplexen Puzzles des marinen Kohlenstoffkreislaufs sein.
Kombination von Methoden ermöglicht neue Einblicke
„Diese detaillierte 'meta-proteogenomische' Studie vereint die außergewöhnliche Expertise der Universität Greifswald, Proteine in komplexen Umweltproben zu identifizieren und quantifizieren, mit unserer Expertise in der molekularen mikrobiellen Ökologie“, betont Rudolf Amann, Co-Autor der Studie und Direktor des Max-Planck-Instituts für Marine Mikrobiologie in Bremen. „Unsere Ergebnisse deuten darauf hin, dass das komplexe heterotrophe Mikrobiom der Nordsee auf zweierlei Art auf Algenblüten reagiert: Einerseits verändern sich infolge des wechselnden Nahrungsangebots die Bakterienarten nach einem wiederkehrenden Muster, andererseits verändert sich aber auch die Expression von Transporterproteinen und Abbauenzymen deutlich.“ Letztendlich wird es die Kombination verschiedener Methoden sein, die unser Wissen über die Moleküle, enzymatischen Reaktionen und Raten, die dem marinen Kohlenstoffkreislauf zugrunde liegen, voranbringen wird. Und das ist eine wichtige Voraussetzung, um den Kohlendioxidgehalt der Atmosphäre vorherzusagen und zu managen.
Diese Newsmeldung wurde mit Material des Max-Planck-Instituts für Marine Mikrobiologie via Informationsdienst Wissenschaft erstellt.