Faszie

Die Rektusscheide und die Fascia thoracolumbalis stellen eine kräftige fasziale Unterstützung her zwischen dem unteren Rippenbereich und dem oberen Teil des Beckens.
Faszien stellen Führungsbahnen im Körper bereit: Die Beuger-Sehnen der Hand ziehen unter dem Retinaculum flexorum hindurch, dem Dach des Karpaltunnels.

Faszie (plural Faszien, adjektiv faszial; aus dem Lateinischen: „Band, Bündel, Verbund“) bezeichnet die Weichteil-Komponenten des Bindegewebes, die den ganzen Körper als ein umhüllendes und verbindendes Spannungsnetzwerk durchdringen. Hierzu gehören alle kollagenen faserigen Bindegewebe, insbesondere Gelenk- und Organkapseln, Sehnenplatten (Aponeurosen), Muskelsepten, Bänder, Sehnen, Retinacula (sogenannte „Fesseln“ beispielsweise an den Füßen) sowie die „eigentlichen Faszien“ in der Gestalt von flächigen festen Bindegewebsschichten wie die Plantarfaszie an der Fußsohle.[1]

Dieses körperweite Netzwerk erhält die strukturelle Integrität, das heißt es sorgt dafür, dass die Teile des Körpers zu einem Ganzen zusammengefügt sind und bleiben. Es unterstützt den Körper, schützt ihn und wirkt wie ein elastischer Stoßdämpfer bei Bewegungen. Faszien spielen eine wesentliche Rolle bei hämodynamischen und biochemischen Prozessen und bilden eine Matrix für die interzelluläre Kommunikation. Sie haben eine entscheidende Funktion bei der Abwehr des Körpers gegen Krankheitserreger und Infektionen. Nach Verletzungen bilden Faszien die Grundlage für den Heilungsprozess des Gewebes.[2]

Einige Autoren verwenden gelegentlich eine engere Fasziendefinition, wonach nur flächige Strukturen als Faszien bezeichnet werden. Je nach Autor gehören dann Aponeurosen, Retinaculi, die Fascia superficialis (Unterhaut-Fettgewebe) oder das intramuskuläre Bindegewebe mit dazu – oder auch nicht. Seit dem ersten internationalen Fascia Research Congress[3] haben sich die führenden Experten in diesem Feld auf den oben formulierten umfassenderen Faszienbegriff geeinigt. Diese neue Definition von Faszien ist im Wesentlichen deckungsgleich mit dem, was der Laie unter „Bindegewebe“ versteht (im Unterschied zum medizinischen Fachmenschen, für den beispielsweise Knochen, Knorpel oder auch Blut ebenfalls Bindegewebe sind).[3]

Die drei Schichten der Faszien

Oberflächliche Faszien

Oberflächliche Faszien befinden sich im Unterhautgewebe in den meisten Teilen des Körpers und vermischen sich mit der retikulären Schicht der Lederhaut (Dermis).[4] Sie befinden sich über dem oberen Bereich des Musculus sternocleidomastoideus, am Nacken und über dem Brustbein (Sternum).[5] Sie bestehen hauptsächlich aus lockerem Bindegewebe sowie Fettgewebe. Neben ihrer subkutanen Präsenz umschließt diese Art von Faszien Organe, Drüsen und neurovaskuläre Leitbahnen und füllt an vielen anderen Stellen freien Raum. Sie speichert Fett und Wasser; sie fungiert als Durchgang für Lymphe, Nerven und Blutgefäße sowie als Puffer und Dämpfer.[6] Da ein beträchtlicher Teil der Bindegewebszellen dieser Schicht miteinander Kontakt hat, vermutet man auch, dass diese Schicht als ein körperweites nicht-neurales Kommunikationsnetzwerk dienen könnte.[7]

Tiefe Faszien

Tiefe Faszien sind die dichten faserreichen Bindegewebs-Schichten und -Stränge, welche die Muskeln, Knochen, Nervenbahnen und Blutgefäße des Körpers durchdringen und umschließen. Je nach lokalen Belastungsverhältnissen verdichtet und organisiert sich dieses Gewebenetzwerk als Sehnenplatten (Aponeurosen), große flächenhafte Faszien (wie der Fascia Lata oder der Plantarfaszie), als Ligamente (Bänder), Sehnen, Retinaculae (Fesseln), Gelenkkapseln oder als Muskelsepten. Als hochinnerviertes Periosteum umhüllt dieses Gewebe die Knochen, als Perichondrium die Knorpelgewebe, als Tunica externa die Blutgefäße und als Perineurium die Nervenbahnen. Ferner sind alle Muskelfasern von einer Endomysium-Schicht umhüllt, während das Perimysium einzelne Muskelfaserbündel zusammenfasst und schließlich das Epimysium den ganzen Muskel umhüllt. Der hohe Anteil an Kollagenfasern verleiht diesen Geweben eine hohe viskoelastische Zugbelastbarkeit.[8]

Viszerale Faszie

Viszerale Faszien dienen als Aufhängung und Einbettung der inneren Organe und wickeln diese in Schichten aus Bindegewebsmembranen. Jedes dieser Organe ist mit einer Doppelschicht aus serösen Membranen umgeben. Die äußerste Wand eines Organs wird als „parietale Schicht“ bezeichnet, wohingegen die Haut des Organs „viszerale Schicht“ genannt wird. Die Organe besitzen spezifische Namen für ihre viszeralen Faszien. Im Gehirn nennt man sie Meningen, im Herz Pericardium, in der Lunge Pleura und im Bauch Peritoneum.[9]

Fasziale Dynamik

Faszien sind sehr anpassungsfähige Gewebsteile. Aufgrund ihrer hohen Viskoelastizität können sich oberflächliche Faszien deutlich dehnen, um beispielsweise Körperfett aufzunehmen in Verbindung mit normaler oder pränataler Gewichtszunahme. Viszerale Faszien sind im Allgemeinen weniger dehnbar als die oberflächlichen Faszien. Aufgrund ihrer verbindenden Funktion für die Organe muss ihre Spannung konstant bleiben. Wenn sie zu locker wären, würde dies zu einem Vorfall des Organs führen; wären sie zu hypertonisch, würde es die Organmobilität einschränken.[10] Tiefe Faszien sind ebenso weniger dehnbar als oberflächliche Faszien. Sie sind weniger durchblutet,[11] jedoch hoch innerviert mit sensorischen Rezeptoren, die Schmerz signalisieren (Nozizeptoren), Bewegungsänderungen (Propriozeptoren), Änderungen von Druck und Schwingungen (Mechanorezeptoren), Änderungen des chemischen Milieus (Chemorezeptoren) sowie Temperaturschwankungen (Thermorezeptoren).[12][13] Viele tiefe Faszien sind in der Lage, auf eine entsprechende mechanische oder chemische Stimulation mit Kontraktion oder Entspannung sowie durch eine allmähliche strukturelle Umorganisation ihrer inneren Bauelemente zu reagieren .[14] Tiefe Faszien besitzen spezielle Glattmuskel-ähnliche Bindegewebszellen (Myofibroblasten), welche diesen die Fähigkeit geben, sich ähnlich wie viele Eingeweide oder Blutgefäße über eine lange Zeit aktiv kontrahieren zu können. Die Steifigkeit einer Faszie hängt offenbar mit der Dichte an Myofibroblasten zusammen. So findet man sowohl bei der Palmaren Fibromatose (Dupuytren-Kontraktur) als auch bei pathologischer Schultersteife (Frozen Shoulder) eine besonders hohe Myofibroblasten-Dichte.[15]

Siehe auch

Einzelnachweise

  1. „Über Faszien“ auf Fasciacongress.org, zugegriffen am 1. Oktober 2008 (Englisch)
  2. Serge Paoletti: The Fasciae: Anatomy, Dysfunction & Treatment. Eastland Press, Seattle 2006, Seite 151–161, ISBN 0-939616-53-X.
  3. 3,0 3,1 Webseite des 1st International Fascia Research Congress (Englisch)
  4. John E. Skandalakis, P. N. Skandalakis, L. J. Skandalakis, J. Skandalakis: Surgical Anatomy and Technique. Zweite Auflage. Springer, Atlanta 2002, Seite 1–2, ISBN 0-387-98752-5.
  5. Serge Paoletti: The Fasciae: Anatomy, Dysfunction & Treatment. Eastland Press, Seattle 2006, Seite 23–24, ISBN 0-939616-53-X.
  6. Gil. Hedley: The Integral Anatomy Series. Band 1: Skin and Superficial fascia. DVD. Integral Anatomy Productions, 2005. Zugegriffen am 17. Juli 2006.
  7. M. Langevin: Connective tissue: A bodywide signaling network? In: PubMed. [1]
  8. Gil. Hedley: The Integral Anatomy Series. Band 2: Deep Fascia and Muscle. DVD. Integral Anatomy Productions, 2005. Zugegriffen am 17. Juli 2006.
  9. Gil. Hedley: The Integral Anatomy Series. Band 3: Cranial and Visceral Fasciae. DVD. Integral Anatomy Productions, 2005. Zugegriffen am 17. Juli 2006.
  10. Serge Paoletti: The Fasciae: Anatomy, Dysfunction & Treatment. Eastland Press, Seattle 2006, Seite 146–147, ISBN 0-939616-53-X.
  11. Ida P. Rolf: Rolfing. Healing Arts Press, Rochester 1989, Seite 38, ISBN 0-89281-335-0.
  12. Leon Chaitow: Soft Tissue Manipulation. Healing Arts Press, Rochester 1988, Seite 26–28, ISBN 0-89281-276-1.
  13. R. Schleip: Fascial plasticity – a new neurobiological explanation. Teil 1. In: Journal of Bodywork and Movement Therapies. Band 7 (1), Elsevier, 2003, Seite 15–19.
  14. Thomas W. Myers: Anatomy Trains. Churchill Livingstone, London 2002, Seite 15, ISBN 0-443-06351-6.
  15. Lars Remvig et al: Do patients with Ehlers-Danlos Syndrome and/or Hypermobility Syndrome… In: T. W. Findley, R. Schleip: Fascia Research. Elsevier Urban & Fischer, München 2007, Seite 87

Diese Artikel könnten dir auch gefallen

Die letzten News

20.01.2021
Genetik | Evolution
Was das Genom des Lungenfischs über die Landeroberung der Wirbeltiere verrät
Das vollständig sequenzierte Genom des Australischen Lungenfisches ist das größte sequenzierte Tiergenom und hilft, den Landgang der Wirbeltiere besser zu verstehen.
20.01.2021
Zoologie | Ethologie
Weniger gestresst: Hochrangige Hyänenmännchen haben bei Weibchen beste Chancen
Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Zoo- und Wildtierforschung (Leibniz-IZW) haben herausgefunden, dass die Interaktion mit anderen Männchen für rangniedrige Tüpfelhyänenmännchen "stressiger" ist als für hochrangige.
18.01.2021
Zytologie | Entwicklungsbiologie
Die ersten Löwen-Embryonen aus eingefrorenen Eizellen
E
18.01.2021
Mikrobiologie | Biochemie | Biotechnologie
Mikroorganismus baut Phenol unter extremen Bedingungen ab
Forschende vom Leibniz-Institut DSMZ in Braunschweig haben den Abbau von Phenol durch Saccharolobus solfataricus charakterisiert.
18.01.2021
Physiologie | Land-, Forst- und Viehwirtschaft
Methanausstoß von Milchkühen messen
Wissenschaftler des Instituts für Nutztierbiologie Dummerstorf haben ein neues Verfahren zur Vorhersage des Methanausstoßes einer Milchkuh entwickelt.
18.01.2021
Zoologie | Genetik | Ethologie
Berliner Igel bilden keine genetisch isolierten Bestände
Igel leben sowohl auf dem Lande als auch in größeren Städten.
16.01.2021
Botanik | Taxonomie
Die einzigartige Flora Neukaledoniens
Sieben neue Arten der Hundsgiftgewächse (Apocynaceae) haben Forscher*innen der Universität Bayreuth in Neukaledonien entdeckt. Auf den Spuren des britischen Entdeckers James Cook untersuchten sie im Frühjahr 2019 die Flora auf der Inselgruppe im Südwestpazifik.
16.01.2021
Taxonomie | Fischkunde
Neue Fischgattung aus Indien: Der Kiemenschlitzaal
Senckenberg-Wissenschaftler Ralf Britz hat gemeinsam mit internationalen Kolleg*innen eine neue Fischgattung beschrieben.
16.01.2021
Anthropologie
Wo man lebt, prägt das Verhalten
Je nachdem, wo auf der Welt sie leben, organisieren Menschen aus Jäger- und Sammlergesellschaften sich ihr Leben zum Beispiel bei der Nahrungssuche, Fortpflanzung, Betreuung des Nachwuchses und sogar hinsichtlich ihres sozialen Umfelds ähnlich wie Säugetier- und Vogelarten, mit denen sie ihren Lebensraum teilen.
16.01.2021
Ökologie | Biochemie
Wie Pflanzen Abwehrgifte bilden ohne sich selbst zu schaden
In einer neuen Studie klären Forschende des Max-Planck-Instituts für chemische Ökologie und der Universität Münster die Biosynthese und genaue Wirkungsweise von Diterpen-Glykosiden in wilden Tabakpflanzen auf.
13.01.2021
Zoologie | Ethologie | Meeresbiologie
Kegelrobben fressen Seehunde, Schweinswale – und ihre Artgenossen
Kegelrobben (Halichoerus grypus) sind Deutschlands größte freilebende Raubtiere. Viele Feriengäste kennen das Bild, wenn sie auf Helgoland am Strand oder in anderen Nordseeregionen auf Sandbänken liegen – friedlich nebeneinander oder neben Seehunden.
12.01.2021
Botanik | Ökologie | Insektenkunde
Schmetterling beweist: Karpaten waren in der Eiszeit teilweise bewaldet
Senckenberg-Wissenschaftler haben die Rückzugsorte des Tagfalters Erebia aethiops während der letzten Eiszeit in Europa untersucht.
12.01.2021
Mikrobiologie | Biochemie
Bakterium produziert pharmazeutische Allzweckwaffe
Ein Wirkstoff aus den Blättern einer Zierpflanze gilt seit einigen Jahren als möglicher Vorreiter einer neuen Gruppe potenter Medikamente.
11.01.2021
Zoologie | Physiologie | Video
Neon-grünes Leuchten beim Wüstengecko
Forschende der Zoologischen Staatssammlung München (SNSB-ZSM), der LMU und der Hochschule München haben entdeckt, dass der Wüstengecko Pachydactylus rangei aus Namibia unter UV-Licht stark neon-grün fluoreszierende Streifen an den Körperseiten und um die Augen zeigt.
11.01.2021
Ethologie | Land-, Forst- und Viehwirtschaft
Ziegen mögen Denksport
Wissenschaftler untersuchten in einem Deutsch-Schweizer Projekt die Lernfähigkeit von Ziegen.
09.01.2021
Ethologie | Neurobiologie
Schlaf für Erholung des Gehirns unersetzlich
Forscher*innen des Universitätsklinikums Freiburg weisen erstmals direkt nach, dass während des Schlafens im Gehirn aktive Erholungsprozesse ablaufen, die sich nicht durch Ruhe ersetzen lassen. Die Erkenntnisse sind relevant für optimale Leistung.
07.01.2021
Ökologie | Biodiversität
Starker Rückgang einer einst zahlreichen Tierart
Eine erneute Untersuchung der Puku-Antilopen im Kasanka Nationalpark in Sambia dokumentiert einen starken Rückgang.
07.01.2021
Ethologie | Video | Primatologie
Guineapaviane grunzen mit Akzent
Vokales Lernen führt zur Anpassung der Lautstruktur in einer mehrstufigen Pavian-Gesellschaft.
07.01.2021
Klimawandel | Meeresbiologie
Das neue Gesicht der Antarktis
Die Antarktis könnte künftig ergrünen und von neuen Arten besiedelt werden. Andererseits dürften Spezies verschwinden.
07.01.2021
Klimawandel | Meeresbiologie | Neobiota
Biodiversitäts-Kollaps im östlichen Mittelmeer
Ein internationales Forschungsteam unter der Leitung von Paolo G.
07.01.2021
Botanik | Klimawandel
Klimawandel verursachte Mangrovensterben in Oman
Vor rund 6.000 Jahren verschwanden die meisten Mangroven-Bestände an den Küsten Omans.
04.01.2021
Biodiversität | Land-, Forst- und Viehwirtschaft
Angepasste Konzepte für die Vielfalt der Waldbewirtschaftung
Europas Wälder müssen heute viele Funktionen gleichzeitig erfüllen. Wer Holz nutzt und die Biodiversität fördert, deckt zwei wichtige davon ab.
01.01.2021
Physiologie | Paläontologie
Früher Säuger mit erstaunlich präzisem Biss
Wissenschaftlern ist es gelungen, die Kaubewegung eines frühen Säugetiers zu rekonstruieren, das vor knapp 150 Millionen Jahren gelebt hat. Demnach arbeitete sein Gebiss äußerst präzise und mit erstaunlich hoher Effizienz.
29.12.2020
Klimawandel | Land-, Forst- und Viehwirtschaft
Klimakrise lässt Seen schrumpfen
Autoren plädieren in Fachartikel für mehr Aufmerksamkeit für Regionen, in denen der Wasserpegel sinkt.
28.12.2020
Zoologie | Physiologie | Ethologie
Globale Studie über Frequenzen von Vogelgesängen
Viele Tiere kommunizieren über akustische Signale.