Heterotrimeres G-Protein

3D-Struktur eines heterotrimeren G-Proteins.

Heterotrimere G-Proteine sind aus drei Untereinheiten (α, β und γ) bestehende GTP bindende Proteine (G-Proteine). Sie sind von großer Bedeutung für die Weiterleitung von Signalen außerhalb der Zelle in das Zellinnere (Signaltransduktion) und sind so verantwortlich für physiologische (z. B. Sehen, Riechen, Blutdruckregulation etc.) und pathophysiologische Effekte (z. B. Hypertonie, Herzinsuffizienz, etc.).

Nach Aktivierung eines G-Protein-gekoppelten Rezeptors zerfallen sie einerseits in eine aktivierte α-Untereinheit und andererseits in eine βγ-Untereinheit unter Austausch von GDP gegen GTP.

Funktion

Aktivierung heterotrimerer G-Proteine

Heterotrimere G-Proteine sind durch G-Protein-gekoppelte Rezeptoren allosterisch regulierte Proteine. Sie können durch diese Rezeptoren zyklisch aktiviert werden:

  1. Im inaktiven Zustand liegen sie als Heterotrimer bestehend aus je einer α-, β- und γ-Untereinheit vor. In diesem Zustand ist GDP gebunden.
  2. Dieses Heterotrimer kann an einen Rezeptor binden.
  3. Eine Aktivierung eines G-Protein-gekoppelten Rezeptors führt zu einer Aktivierung des gebundenen Heterotrimers und damit zu einem Austausch von GDP gegen GTP. Hieran sind GTP-Austauschfaktoren (GTP exchange factors, GEFs) beteiligt.
  4. Durch das gebundene GTP verliert das Heterotrimer seine Stabilität. Dies hat eine Konformationsänderung des Heterotrimeren G-Proteins oder seinen Zerfall in eine GTP-α- und eine βγ-Untereinheit zur Folge.
  5. Die α-Untereinheit ist eine allosterisch regulierte GTPase, die durch GTPase aktivierende Proteine aktiviert wird. Sie katalysiert die Hydrolyse des gebundenen GTPs zu GDP.
  6. GDP-α-Untereinheiten und βγ-Untereinheiten können wieder assoziieren.

Aktivierung nachgeschalteter Signaltransduktionswege

Aktivierte G-Proteine sind in der Lage nachgeschaltete Signaltransduktionswege zu beeinflussen. Die α-Untereinheiten können beispielsweise die Adenylylcyclase aktivieren oder hemmen und so die Konzentration des Second Messengers zyklisches Adenosinmonophosphat (cAMP) verändern. Weiterhin können sie Phospholipasen und Proteinkinasen aktivieren oder Ionenkanäle modulieren. Auch die βγ-Untereinheit kann bei der Regulation von Second Messengern von Bedeutung sein; manche Effektoren, wie beispielsweise bestimmte Ionenkanäle, werden direkt von βγ-Untereinheiten reguliert. Über die Veränderung der Second-messenger-Konzentration wird unmittelbar oder mittelbar ein messbarer Effekt ausgelöst.

Klassifizierung

Für die Signaltransduktion ist insbesondere die α-Untereinheit von Bedeutung, von der über 20 Isoformen bekannt sind. Anhand ihrer Eigenschaften werden diese Isoformen im Wesentlichen in 4 Familien zusammengefasst (αs, αi, αq und α12/13), nach denen auch die G-Proteine entsprechend benannt werden (Gs, Gi, Gq und G12/13).

G-Protein-Familie α-Untereinheiten Signaltransduktion Vorkommen / Rezeptoren Effekte (Beispiele)
Gi-Familie
Gi/o αi, αo Hemmung der Adenylylcyclase, Hemmung der Bildung von cAMP, Öffnung von Kaliumkanälen, Hemmung von Calciumkanälen heptahelikale Hormon- und Neurotransmitterrezeptoren, (z. B. muskarinische Rezeptoren,Chemokinrezeptoren, α2-Adrenozeptoren) Kontraktion glatter Muskulatur, Hemmung der Erregungsweiterleitung
Gt αt (Transducin) Aktivierung der Phosphodiesterase 6, Abbau von cGMP Rhodopsin Sehen
Ggust αgust (Gustducin) Aktivierung der Phosphodiesterase 6, Abbau von cGMP Geschmacksrezeptoren Geschmack
Gz αz Hemmung der Adenylylcyclase ? ?
Gs-Familie
Gs αs Aktivierung der Adenylylcyclase, Bildung von cAMP heptahelikale Hormon- und Neurotransmitterrezeptoren (z. B. Beta-Adrenozeptoren) Steigerung der Herzfrequenz, Relaxation glatter Muskulatur, Erregungsweiterleitung
Golf αolf Aktivierung der Adenylylcyclase, Bildung von cAMP olfaktorische Rezeptoren Riechen
Gq-Familie
Gq αq, α11, α14, α15, α16 Aktivierung der Phospholipase C, Bildung von IP3 und DAG heptahelikale Hormon- und Neurotransmitterrezeptoren (z. B. α1-Adrenozeptoren, H1-Rezeptoren, AT1-Rezeptoren, metabotroper Glutamatrezeptor der Gruppe I) Kontraktion glatter Muskulatur, Erregungsweiterleitung
G12/13-Familie
G12/13 α12, α13 Aktivierung der Rho-GTPasen und Rho-Kinasen heptahelikale Hormon- und Neurotransmitterrezeptoren (z. B. Thromboxan-A2-Rezeptoren) Cytoskelettfunktionen, Kontraktion glatter Muskulatur

Die News der letzten Tage

17.11.2022
Meeresbiologie | Taxonomie
Dornenkronenseesterne aus dem Roten Meer sind endemisch!
Neben dem Klimawandel stellen korallenfressende Dornenkronenseesterne (Acanthaster spp.
17.11.2022
Klimawandel | Meeresbiologie
Eisbedeckung im Südpolarmeer: Auswirkungen auf Meiofauna und Makrofauna
Wissenschaftlerinnen haben erstmals untersucht, wie sich Gemeinschaften von Meiofauna und Makrofauna unter verschiedenen Umweltbedingungen im Südpolarmeer zusammensetzen.
16.11.2022
Biochemie | Physiologie
Pflanzen zwischen Licht und Schatten
In der Forschung werden Pflanzen häufig unter konstantem Licht angezogen, was nicht den natürlichen Bedingungen in der Natur entspricht.
15.11.2022
Anthropologie | Ethologie | Paläontologie
Guten Appetit! Homo hat bereits vor 780.000 Jahren Fisch gekocht
Fischzähne der archäologischen Fundstelle Gesher Benot Ya’aqov in Israel liefern den frühesten Hinweis auf das Garen von Nahrungsmitteln durch unsere Vorfahren.
15.11.2022
Biodiversität | Bioinformatik | Botanik
Eine Weltkarte der Pflanzenvielfalt
Warum gibt es an manchen Orten mehr Pflanzenarten als an anderen?
15.11.2022
Biodiversität | Land-, Forst-, Fisch- und Viehwirtschaft | Ökologie
Biodiversität von Wiesen- und Weideflächen: Ein Gewinn für Natur, Landwirtschaft und Tourismus
Ein internationales Team hat in einer langangelegten Studie nachgewiesen, wie wichtig die Biodiversität von Wiesenflächen für ein breites Spektrum von Ökosystemleistungen und unterschiedliche Interessengruppen ist.
15.11.2022
Biochemie | Land-, Forst-, Fisch- und Viehwirtschaft | Zytologie
Wie funktioniert der Mangantransport in Pflanzen?
Das Protein BICAT3 ist einer der wichtigsten Mangan-Verteiler in Pflanzen - ist es defekt, hat das einen verheerenden Einfluss auf das Wachstum der Pflanzen.
14.11.2022
Ökologie | Säugetierkunde
Kollisionsrisiko für Fledermäuse bei großen Windkraftanlagen
Um Fledermäuse vor der Kollision mit Windenergieanlagen zu schützen, werden in Genehmigungsverfahren akustische Erhebungen durchgeführt.
09.11.2022
Physiologie | Vogelkunde
Kohlmeisen: Hormonschwankungen als Überlebensvorteil?
Bei freilebenden Kohlmeisen gibt es zwischen Individuen große Unterschiede in der Menge an Stresshormonen im Blut.