mTOR


MTOR

Eigenschaften des menschlichen Proteins
Masse/Länge Primärstruktur 2549 Aminosäuren
Bezeichner
Gen-Name FRAP1
Externe IDs OMIM: 601231 UniProtP42345
mTOR Signalwege, 2008.[1]

mTOR (Abk. für engl. mammalian Target of Rapamycin, zu deutsch Ziel des Rapamycins im Säugetier) ist der Name des in allen Säugetieren vorkommenden Proteins, an welches das Immunsuppressivum Rapamycin bindet. Es handelt sich bei mTOR um ein für Überleben, Wachstum, Proliferation und Motilität von Zellen wichtiges Enzym, das eine Phosphatgruppe zu mehreren anderen Proteinen und Enzymen hinzufügt und diese so aktiviert. Damit ist mTOR Teil der Signaltransduktion im Körper und Anfang einer Kaskade von Signalwegen. Eine Hemmung von mTOR ist für die immunschwächenden Wirkungen von Rapamycin verantwortlich.

Allgemeine Eigenschaften

mTOR ist Bestandteil eines Proteinkomplexes, der unterschiedliche Signalwege von Wachstumsfaktoren, Energiehaushalt und Sauerstoffkonzentration der Zelle integriert, die Translation von Proteinen reguliert und so Zellwachstum und Zellzyklus steuert.

mTOR wurde bei der Untersuchung, an welche Proteine Rapamycin bindet, entdeckt. mTOR besteht aus 2549 Aminosäuren. Die Molekülmasse beträgt 290 kDa.[2][3][4]

Aktivierung von mTOR durch Stimulation von Wachstumsfaktor-Rezeptoren

Werden die Wachstumsfaktor-Rezeptoren durch spezifische Liganden stimuliert (z. B. IGF-Rezeptor), phosphoryliert Phosphoinositid-3-Kinase (PI3K) Phosphatidylinositol-4,5-bisphosphat (PIP2) zu Phosphatidylinositol-3,4,5-trisphosphat (PIP3). PIP3 ist ein Second Messenger, der dazu führt, dass weitere Kinasen wie PDK1 und die Proteinkinase B (AKT) an die Membran binden und aktiviert werden. Die Tumor-Suppressor-Phosphatase PTEN (Phosphatase and tensin homologue deleted on chromosome 10) hebt die Wirkung von PI3K durch Dephosphorylierung von PIP3 auf. Die Aktivierte Proteinkinase B (AKT) phosphoryliert und hemmt den Tuberous Sclerosis Complex (TSC) und hebt damit dessen hemmenden Einfluss auf mTOR auf. TSC besteht aus zwei Proteinen, TSC1 (Hamartin) und TSC2 (Tuberin). TSC2 ist ein GTPase-aktivierendes Protein (GAP), welches die mit Ras verwandte Kleine GTPase Rheb (Ras-homolog-enriched-in-brain) durch Hydrolyse von GTP zu GDP inaktiviert, die wiederum mTOR aktiviert.

Hemmung von mTOR durch Nahrungsmangel

Energiedepletion führt zum Abfall der Konzentrationen von Adenosintriphosphat (ATP) und Aminosäuren in der Zelle und zur Aktivierung von Serin Threonin Kinase 11 (STK11 oder LKB1). LKB1 ist ein Tumor-Suppressor-Protein, welches beim Peutz-Jeghers-Syndrom inaktiviert ist. LKB1 aktiviert AMP-aktivierte Proteinkinase (AMPK). AMPK wiederum phosphoryliert und aktiviert TSC2 und hemmt so mTOR.

Durch Integration dieser beiden Signalwege durch Rheb und mTOR wird das Zellwachstum (reguliert über den Wachstumsfaktor-PI3K-Akt Weg) mit der Verfügbarkeit von Energie und Nahrungsstoffen (reguliert über den ATP-LKB1-TSC1/2 Weg) koordiniert.

Funktion von mTOR

mTOR liegt in Komplexen mit anderen Proteinen vor.

mTOR complex 1 (mTORC1) besteht aus mTOR, Raptor (regulatory associated protein of mTOR), mLST8/GβL (mammalian LST8/G-protein β-subunit like protein) und LST8 (lethal with sec thirteen 8)[5]). mTORC1 wird durch Rapamycin gehemmt. Eine Aktivierung von mTORC1 führt zur Phosphorylierung von zwei Schlüsselproteinen, welche die Translation von Proteinen regulieren: 4E-BP1 (eukaryotic initiation factor 4E (eIF-4E) binding protein-1) und S6K1 (protein S6 kinase 1).

mTOR Complex 2 (mTORC2) besteht aus mTOR, Rictor (rapamycin-insensitive companion of mTOR), GβL, und mSIN1 (mammalian stress-activated protein kinase interacting protein 1). mTORC2 wird durch Rapamycin nicht gehemmt. mTORC2 aktiviert AKT durch Phosphorylierung an der Ser473-Position.

4E-BP-1 und S6K1

4E-BP1 und S6K1 sind Regulatoren der Protein-Translation.

Unphosphoryliertes 4E-BP1 bindet an RNA-cap-bindendes Protein eIF-4E und hemmt dadurch die Kopplung an mRNA und den Translations-Initiations-Komplex, der zur Initiation der Translation cap-abhängiger mRNAs benötigt wird. Aktivierter mTORC1 phosphoryliert 4E-BP1, dadurch wird eIF-4E freigesetzt. Dieses bindet an cap-mRNA-Transkripte und andere Proteine des Initiations-Komplexes, diese Bindung initiiert cap-abhängige Translation. Die erhöhte Translation cap-abhängiger mRNAs führt unter anderem zur Synthese mehrerer Proteine, die die Zellproliferation kontrollieren und das Zellwachstum regulieren.

mTORC1 phosphoryliert S6K1. Dieser Schritt stimuliert die weitere Phosphorylierung von S6K1 durch die Master-Kinase PDK1. Aktiviertes S6K1 stimuliert die Initiierung der Protein-Biosynthese durch Aktivierung des ribosomalen Proteins S6 und anderer Komponenten der Translationsmaschinerie. In einer positiven Rückkopplungsschleife kann S6K1 mTORC1 phosphorylieren und die mTOR-Aktivität stimulieren.

Medizinische Bedeutung

Besonders empfindlich für eine Hemmung von mTOR sind T-Zellen, Zellen von Blut- und Lymphgefäßen, glatte Muskelzellen und Tumorzellen.[6]

In der Transplantationsmedizin wird der mTOR-Hemmer Rapamycin (Sirolimus) zur Vorbeugung gegen Abstoßungsreaktionen eingesetzt. Ein Vorteil von Rapamycin gegenüber anderen immunsuppressiven Medikamenten wurde in einem geringeren Auftreten von Tumoren gesehen, welcher aber in großen klinischen Studien nicht bestätigt werden konnte.[7] Wird Rapamycin unmittelbar nach Transplantation eingesetzt, kommt es aber wegen des antiangiogenetischen und antiproliferativen Effekts vermehrt zu Wundheilungsstörungen.

In der Kardiologie werden Stents in verschlossene oder verengte Herzkranzgefäße eingesetzt, um diese offen zu halten. Durch Gewebsneubildung kann es zu einem Verschluss des Stents kommen. Eine Beschichtung der Stents mit Rapamycin hemmt die Gewebsneubildung und senkt die Rate von Stentverschlüssen.

Temsirolimus, ein weiterer Hemmstoff von mTOR, verbessert das Überleben von Patienten mit fortgeschrittenem Nierenzellkarzinom[8]. Es ist auch zur Behandlung des seltenen Mantelzelllymphoms zugelassen.

Bei der erblichen Zystennierenkrankheit ist mTOR in den Epithelzellen der Nierenzysten hochreguliert. Im Tiermodell führt Rapamycin zur Apoptose der Zystenwand-Zellen und hemmt so das Wachstum der Zysten.[9]

Während mTOR beim akuten Nierenversagen einen wichtige Rolle bei Erholungs- und Reparaturvorgängen spielt, trägt bei chronischem Nierenversagen und diabetischer Nephropathie eine dauerhafte, inadäquate Aktivierung des mTOR-Signalweges zur Progression der Nierenschädigung bei.[10]

Bei Patienten mit Tuberöser Sklerose und Lymphangioleiomyomatose führt Behandlung mit Sirolimus zu einer Besserung des Krankheitsverlaufs.[11]

Glossar:
4E-BP1 eukaryotic initiation factor 4E (eIF-4E) binding protein-1
AKT Proteinkinase B
AMPK AMP-aktivierte Proteinkinase
ADP Adenosindiphosphat
ATP Adenosintriphosphat
GAP GTPase-aktivierendes Protein
GβL mammalian LST8/G-protein β-subunit like protein
IGF Insulin-like growth factor
IGFR Insulin-like growth factor receptor
LKB1 Serin Threonin Kinase 11 (STK11)
mLST8/GβL mammalian LST8/G-protein β-subunit like protein
mSIN1 mammalian stress-activated protein kinase interacting protein 1
mTOR mammalian Target of Rapamycin
PDK1 Phosphoinositide-dependent kinase 1
PI3K Phosphatidylinositol-3-Kinase
PIP2 Phosphatidylinositol-4,5-bisphosphat
PIP3 Phosphatidylinositol-3,4,5-triphosphat
PTEN Phosphatase and tensin homologue deleted on chromosome 10
Raptor regulatory associated protein of mTOR
Rheb Ras-homolog-enriched-in-brain
Rictor rapamycin-insensitive companion of mTOR
S6K1 protein S6 kinase 1
STK11 Serin Threonin Kinase 11 (LKB1)
TSC Tuberous Sclerosis Complex

Einzelnachweise

  1. The mTOR pathway 2008. Abgerufen am 7. September 2012.
  2. Hay N, Sonenberg N.: Upstream and downstream of mTOR. In: Genes Dev. Nr. 18, 2004, S. 1926–1945 (Artikel). PMID 15314020
  3. Xuemin Wang, and Christopher G. Proud: The mTOR Pathway in the Control of Protein Synthesis. In: Physiology. Nr. 21, 2006, S. 362–369 (Artikel).
  4. Janet E. Dancey: MTOR and Related Pathways. In: Cancer Biology & Therapy. Nr. 5, 2006, S. 1065–1073 (Artikel [PDF]).
  5. Loewith, R. et al.: Two TOR Complexes, Only One of which Is Rapamycin Sensitive, Have Distinct Roles in Cell Growth Control. In: Molecular Cell. Vol.10(3), 2002, S. 457–468 (Abstract).
  6. G. Blaeser-Kiel: Sirolimus zum Transplantatschutz. Bessere Langzeitprognose durch geringere Tumorinzidenz. In: Deutsches Ärzteblatt. Nr. 104, 2007, S. A-1255 (Artikel).
  7. Ekberg, Henrik et al.: Reduced Exposure to Calcineurin Inhibitors in Renal Transplantation. In: N Engl J Med. Nr. 357, 2007, S. 2561–2575 (Abstract).
  8. Hudes, Gary et al.: Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. In: Engl J Med. Nr. 356, 2007, S. 2271–2281 (Abstract).
  9. Kühn, W., Walz, G.: Autosomal dominante polyzystische Nierenerkrankung. In: Dtsch Arztebl. Nr. 104(44), 2007, S. 3022–3028 (Artikel).
  10. Wilfred Lieberthal, Jerrold S Levine: The role of the mammalian target of rapamycin (mTOR) in renal disease. In: Journal of the American Society of Nephrology: JASN. 20. Jahrgang, Nr. 12, Dezember 2009, ISSN 1533-3450, S. 2493–2502, doi:10.1681/ASN.2008111186 (nih.gov [abgerufen am 15. Mai 2010]).
  11. Bissler, John J. et al.: Sirolimus for Angiomyolipoma in Tuberous Sclerosis Complex or Lymphangioleiomyomatosis. In: N Engl J Med. Nr. 358, 2008, S. 140–151 (Abstract).

News mit dem Thema mTOR

Die News der letzten Tage

29.11.2022
Ethologie | Zoologie
Geschlechterrollen im Tierreich hängen vom Verhältnis von Weibchen und Männchen ab
Wie wählerisch sollten Weibchen und Männchen sein, wenn sie einen Partner auswählen?
28.11.2022
Ökologie | Paläontologie | Säugetierkunde
Fossil aus dem Allgäu: Biber leben seit mehr als 11 Millionen Jahren im Familen-Clan
Die Hammerschmiede im Allgäu, Fundstelle des Menschenaffen Danuvius, ist eine einmalige Fundgrube für Paläontologen: Bereits über 140 fossile Wirbeltierarten konnten hier geborgen werden.
28.11.2022
Anthropologie | Neurobiologie
Arbeitsgedächtnis: Vorbereitung auf das Unbekannte
Beim Arbeitsgedächtnis, oder auch Kurzeitgedächtnis genannt, galt lange die Theorie, dass seine Kernaufgabe die aktive Speicherung von Informationen über einen kurzen Zeitraum ist.
28.11.2022
Meeresbiologie | Ökologie
Offshore-Windparks verändern marine Ökosysteme
Der Ausbau von Offshore-Windparks in der Nordsee geht voran, doch die Konsequenzen für die marine Umwelt, in der sie errichtet werden, sind noch nicht vollständig erforscht.
25.11.2022
Evolution | Genetik | Neurobiologie
Was haben Oktopus und Mensch gemeinsam?
Kopffüßler sind hochintelligente Tiere mit komplexem Nervensystem, dessen Evolution mit der Entwicklung von auffällig viel neuer microRNA verbunden ist.
25.11.2022
Klimawandel | Ökologie
Der Klimawandel in den Wäldern Norddeutschlands
Immer mehr Bäume leiden an den Folgen des menschgemachten Klimawandels der vergangenen Jahrzehnte.
24.11.2022
Biochemie | Entwicklungsbiologie | Genetik
Das Erwecken des Genoms
Die Befruchtung einer Eizelle durch ein Spermium ist der Beginn neuen Lebens, die mütterliche und väterliche Erbinformation, die DNA, wird neu kombiniert und speichert den Aufbau des Lebewesens.
24.11.2022
Genetik | Mykologie | Taxonomie
Die Welt der Pilze revolutioniert
Ein internationales Forschungsteam hat unter den bisher bekannten Pilzen und Flechten eine neue Großgruppe identifiziert: Mithilfe von Genom-Sequenzierung konnte nachgewiesen werden, dass über 600 Arten einen gemeinsamen Ursprung haben.
24.11.2022
Insektenkunde | Ökologie
Vegetationsfreie Flächen fördern bodennistende Wildbienen
Über die Nistansprüche bodennistender Wildbienen ist bisher relativ wenig bekannt, obwohl Nistplätze für die Förderung der meisten Wildbienenarten von zentraler Bedeutung sind.