Turbulente Strömung

Beispiel einer turbulenten Strömung

Die turbulente Strömung (lat.: turbare = drehen, beunruhigen, verwirren) ist die Bewegung von Flüssigkeiten und Gasen, bei der Verwirbelungen auf allen Größenskalen auftreten. Diese Strömungsform ist gekennzeichnet durch meist dreidimensionale, scheinbar zufällige, instationäre Bewegungen der Fluidteilchen.

Eigenschaften

Die verstärkte Diffusion aufgrund der Fluktuationsbewegung ist eine der wichtigsten Eigenschaften turbulenter Strömungen. Sie liegt um mehrere Zehnerpotenzen über der molekularen Diffusion. Diese turbulente Querdiffusion führt beispielsweise dazu, dass die Verluste in einer Rohrströmung anwachsen. Während der Druckverlust bei einer laminaren Rohrströmung proportional zur mittleren Geschwindigkeit ist, ist er in einer turbulenten Strömung proportional zum Quadrat der mittleren Strömungsgeschwindigkeit. Weiterhin begünstigt die turbulente Querdiffusion den Wärmetransport in Strömungen mit inhomogener Temperaturverteilung. Turbulente Grenzschichten neigen bei hohen positiven Druckgradienten, beispielsweise auf der Oberseite eines stark angestellten Tragflügels, später zur Ablösung als laminare Grenzschichten.

Turbulente Strömungen sind im Gegensatz zu laminaren Strömungen durch folgende Eigenschaften gekennzeichnet:

  1. ausgeprägte Selbstähnlichkeit („Skalierung“) bei Mittelwertbildung bezüglich Länge und Zeit, mit enorm großer Ausdehnung von zulässigen Längen- und Zeitskalen,
  2. ungeordnete und schwer vorhersagbare raumzeitliche Struktur,
  3. empfindliche Abhängigkeit von Anfangs- und Randbedingungen.

Beispiel zu (1): Ein Wirbelsturm ist mehrere Kilometer groß, während die kleinsten in ihm enthaltenen Wirbel kleiner als einen Millimeter sind.

Beispiel zu (2): Die Windstärke am Ort einer Windkraftanlage schwankt sehr stark und ist schwer vorhersagbar.

Beispiel zu (3): Wenn die Tragfläche eines Flugzeuges vereist, beeinflussen die millimeterkleinen Eiskristalle die turbulente Luftströmung so stark, dass die Maschine abstürzen kann.

Turbulenz (in Luftmassen, Fluiden) kann mit Worten folgendermaßen definiert werden:

  • Zufälligkeit (des Strömungszustandes, der Geschwindigkeiten): nicht vorhersagbar (oder praktisch nicht vorhersagbar, statistisch gesehen aber schon: siehe „deterministisches Chaos“)
  • Diffusivität: starke und schnelle Durchmischung („Konvektion“, „Verwirbelung“), im Gegensatz zum Einfluss der langsameren molekularen Diffusion
  • Dissipation: kinetische Energie wird auf allen Skalen fortgesetzt in Wärme umgewandelt und teilt sich aus den Skalen größerer Ausdehnung (größere „eddies“) in hierarchischer Weise in kleinere Elemente auf („Energiekaskade“). Turbulenter Fluss bleibt also nur erhalten, wenn von außen Energie zugeführt wird.
  • Nichtlinearität: der laminare Fluss wird instabil, wenn die Nichtlinearitäten an Einfluss gewinnen. Mit zunehmender Nichtlinearität kann eine Sequenz verschiedener Instabilitäten auftreten, bevor sich „volle Turbulenz“ ausbildet.

Entstehung von Turbulenz

Zur Darstellung des Unterschiedes zwischen laminarer Strömung und turbulenter Strömung hat der Physiker Osborne Reynolds im Jahr 1883 einen Färbeversuch einer Wasserströmung in einer Rohrleitung vorgenommen und festgestellt, dass sich die Verwirbelung in der Rohrleitung erst ab einer Grenzgeschwindigkeit einstellen kann. Als Beurteilungskriterium wird hierzu die Reynolds-Zahl Re angewandt.

Die Lineare Stabilitätstheorie beschäftigt sich mit dem Umschlag – auch Transition – laminarer Strömungen in turbulente Strömungen. Sie betrachtet dazu das Anwachsen wellenförmiger Störungen mit kleiner Amplitude. Die bekanntesten Instabilitäten sind die Tollmien-Schlichting-Wellen.

Beschreibung turbulenter Strömungen

Um turbulente Strömungen zu beschreiben, unterteilt man die Eigenschaftskomponenten wie die Geschwindigkeit und den Druck in einen gemittelten Term, der von einer statistischen Störbewegung überlagert wird. Man bezeichnet diese Zerlegung auch als Reynoldsche Zerlegung: $ u(x, t)=\overline{u(x)}+u'(x,t) $

Dabei handelt es sich bei der gemittelten Größe $ \overline{u(x)} $ um den Ensemble-Mittelwert. Setzt man diese Zerlegung in die Navier-Stokes-Gleichungen ein, so erhält man zu Beschreibung von turbulenten Strömungen die Reynolds-Gleichungen, die allerdings die Reynoldsspannungen als zusätzliche Unbekannte enthalten. Man hat nun mehr Unbekannte als Gleichungen und benötigt deswegen Schließungsansätze, um das System zu lösen. Unterschiedliche Schließungsansätze haben zu verschiedenen Turbulenzmodellen geführt.

Die wichtigsten Schließungsansätze sind der Ansatz von Boussinesq und die Prandtlsche Mischungsweghypothese. Die wichtigsten Turbulenzmodelle sind die $ k\text{-}\epsilon $-Turbulenzmodelle und die Large Eddy Simulation.

Turbulente Strömungen kann man in isotrope Turbulenz, homogene Turbulenz und Scherturbulenz klassifizieren, die jeweils bestimmte charakteristische Merkmale aufweisen. In der Praxis tritt normalerweise die Scherturbulenz auf, da es sich bei isotroper und homogener Turbulenz um idealisierte Strömungsformen handelt. Da turbulente Strömungen mathematisch schwierig zu beschreiben sind, bezieht man sich zu ihrer Charakterisierung häufig auf idealisierte Strömungsformen, da sich in solchen Fällen die Reynoldsgleichungen weiter vereinfachen.

Wie schwierig, vielfältig und wenig verstanden die Turbulenz ist, zeigt folgendes Zitat:

„ Wenn ich in den Himmel kommen sollte, erhoffe ich Aufklärung über zwei Dinge: Quantenelektrodynamik und Turbulenz. Was den ersten Wunsch betrifft bin ich ziemlich zuversichtlich. “

Horace Lamb [1]

Energiekaskade

Lewis Fry Richardson legte 1922 die Grundlage für die weitere Turbulenzforschung, indem er die heutige Vorstellung dieses Phänomens begründete. Nach seiner wegweisenden Interpretation wird bei einer turbulenten Strömung die Energie auf großer Skala zugeführt, durch den Zerfall von Wirbeln durch alle Skalen hindurch transportiert (sog. Inertialbereich) und bei kleinsten Skalen in Wärme dissipiert. Dies wird als Energiekaskade bezeichnet.

Die Theorie der Turbulenz wurde von Andrei Nikolajewitsch Kolmogorow in seinen Arbeiten von 1941 und 1962 wesentlich vorangetrieben, als er das Skalenargument von Richardson durch eine Ähnlichkeitshypothese statistisch auswerten und damit für den Inertialbereich das Kolmogorov-5/3-Gesetz herleiten konnte, nach dem die spektrale Dichte mit einem Exponenten von −53 von der Wellenlänge abhängt $ P(k) \sim k^{-\frac 5 3} $. Auch der dissipative Bereich ist nach ihm benannt und wird als Mikroskala von Kolmogorow bezeichnet.

Weitere Beispiele für turbulente Strömungen

  • Wirbel und Strudel in Flüssen
  • der Rauch einer Zigarette in einer ruhenden Umgebung zeigt anfänglich eine laminare (Schicht-)Strömung, die nach einer bestimmten Steighöhe dann deutlich sichtbar turbulent wird
  • die Milch im Kaffee mischt sich ebenfalls mit einer turbulenten Strömung, wohingegen die Mischung zweier Farben meist einer laminaren Mischung durch molekulare Diffusion entspricht
  • das Dampf/Wasser-Gemisch in den Bohrungen des Metallblocks einer Siedekühlung

Literatur

  • Andrey Nikolaevich Kolmogorov, The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers, in: Proceedings of the USSR Academy of Sciences, 1941, Nr. 30, S. 299ff.
    • Englische Übersetzung: Derselbe, The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers, in: Proceedings of the Royal Society of London, Series A: Mathematical and Physical Sciences, 8. Juli 1991, Nr. 434, S. 9ff.
  • Derselbe, Dissipation of energy in locally isotropic turbulence in: Proceedings of the USSR Academy of Sciences, 1941, Nr. 32, S. 16ff.
    • Englische Übersetzung: Derselbe, July 8, 1991, The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers, in: Proceedings of the Royal Society of London, Series A: Mathematical and Physical Sciences, 8. Juli 1991, Nr. 434, S. 15 ff.
  • G. K. Batchelor, The theory of homogeneous turbulence. Cambridge University Press, 1953.

Weblinks

 Commons: Turbulente Strömung – Sammlung von Bildern, Videos und Audiodateien
Vorlage:Commonscat/WikiData/Difference

Einzelnachweise

  1. Horace Lamb, 1932, zitiert in Gerthsen Physik. 22. Auflage, S. 128

Diese Artikel könnten dir auch gefallen

Die letzten News

24.02.2021
Physiologie | Primatologie
Geophagie: Der Schlüssel zum Schutz der Lemuren?
Kürzlich wurde eine transdisziplinäre Forschung über die Interaktionen zwischen Böden und Darm-Mykobiom (Pilze und Hefen) der Indri-Indri-Lemuren veröffentlicht.
24.02.2021
Mikrobiologie | Evolution
Vom Beginn einer evolutionären Erfolgsstory
Unser Planet war bereits lange von Mikroorganismen besiedelt, bevor komplexere Lebewesen erstmals entstanden und sich nach und nach zur heute lebenden Tier- und Pflanzenwelt entwickelten.
24.02.2021
Genetik
Cre-Controlled CRISPR: konditionale Gen-Inaktivierung wird einfacher
Die Fähigkeit, ein Gen nur in einem bestimmten Zelltyp auszuschalten, ist für die modernen Lebenswissenschaften wesentlich.
24.02.2021
Land-, Forst- und Viehwirtschaft | Fischkunde
Bald nur noch ängstliche Fische übrig?
Über die Fischerei werden vor allem größere und aktivere Fische aus Populationen herausgefangen.
23.02.2021
Anthropologie | Neurobiologie
Placebos wirken auch bei bewusster Einnahme
Freiburger Forschende zeigen: Scheinmedikamente funktionieren auch ohne Täuschung. Probanden waren über Placebo-Effekt vorab informiert.
23.02.2021
Botanik | Klimawandel
Auswirkungen des Klimas auf Pflanzen mitunter erst nach Jahren sichtbar
Die Auswirkungen von Klimaelementen wie Temperatur und Niederschlag auf die Pflanzenwelt werden möglicherweise erst Jahre später sichtbar.
23.02.2021
Ökologie | Klimawandel
Biologische Bodenkrusten bremsen Erosion
Forschungsteam untersucht, wie natürliche „Teppiche“ Böden gegen das Wegschwemmen durch Regen schützen.
23.02.2021
Mikrobiologie | Meeresbiologie
Süße Algenpartikel widerstehen hungrigen Bakterien
Eher süß als salzig: Mikroalgen im Meer produzieren jede Menge Zucker während der Algenblüten.
21.02.2021
Evolution | Biochemie
Treibstoff frühesten Lebens – organische Moleküle in 3,5 Milliarden Jahre alten Gesteinen nachgewiesen
Erstmalig konnten biologisch wichtige organische Moleküle in archaischen Fluideinschlüssen nachgewiesen werden. Sie dienten sehr wahrscheinlich als Nährstoffe frühen Lebens auf der Erde.
21.02.2021
Evolution | Biochemie
Origin of Life - Begann die Darwin’sche Evolution schon, bevor es Leben gab?
Ehe Leben auf der Erde entstand, gab es vor allem eines: Chaos.
21.02.2021
Anthropologie | Neurobiologie
Kommunikationsfähigkeit von Menschen im REM-Schlaf
Mit schlafenden Versuchspersonen lassen sich komplexe Nachrichten austauschen. Das haben Wissenschaftler jetzt in Studien gezeigt.
21.02.2021
Paläontologie | Insektenkunde
Fossile Larven - Zeitzeugen in Bernstein
Eine ungewöhnliche Schmetterlingslarve und eine große Vielfalt an Fliegenlarven. LMU-Zoologen haben in Bernstein fossile Bewohner Jahrmillionen alter Wälder entdeckt.
21.02.2021
Ethologie | Ökologie
Wölfe in der Mongolei fressen lieber Wild- als Weidetiere
Wenn das Angebot vorhanden ist, ernähren sich Wölfe in der Mongolei lieber von Wildtieren als von Weidevieh.
21.02.2021
Meeresbiologie
Neuer Wohnort im Plastikmüll: Biodiversität in der Tiefsee
Ein internationales Forscherteam findet einen neuen Hotspot der Biodiversität – und zwar ausgerechnet im Plastikmüll, der sich seit Jahrzehnten in den Tiefseegräben der Erde ansammelt.
19.02.2021
Meeresbiologie | Land-, Forst- und Viehwirtschaft
Durch Aquakultur gelangt vom Menschen produzierter Stickstoff in die Nahrungskette
Ausgedehnte Aquakulturflächen entlang der Küsten sind in Südostasien sehr verbreitet.
19.02.2021
Anthropologie | Paläontologie
Das Aussterben der größten Tiere Nordamerikas wurde wahrscheinlich vom Klimawandel verursacht
Neue Forschungsergebnisse deuten darauf hin, dass die Überjagung durch den Menschen nicht für das Verschwinden von Mammuts, Riesenfaultieren und anderen nordamerikanischen Großtieren verantwortlich war.
18.02.2021
Anthropologie | Virologie
Neandertaler-Gene und Covid-19 Verläufe
Letztes Jahr entdeckten Forscher, dass wir den wichtigsten genetischen Risikofaktor für einen schweren Verlauf der Krankheit Covid-19 vom Neandertaler geerbt haben.
18.02.2021
Taxonomie | Fischkunde
Wüstenfische „under cover“ – neu entdeckte Vielfalt auf der arabischen Halbinsel
Das Landschaftsbild des Oman ist geprägt durch ausgedehnte Wüstenlandschaften und karge, trockene Hochgebirgsketten.
18.02.2021
Genetik | Immunologie | Biochemie
Rätsel des pflanzlichen Immunsystems gelöst
Wie bauen Pflanzen eine Resilienz auf? Ein internationales Forschungsteam hat die molekularen Mechanismen des pflanzlichen Immunsystems untersucht.
17.02.2021
Bionik und Biotechnologie
Gut gestützt und maximal beweglich
Kieler Forschungsteam entwickelt Gelenkschiene für Sport und Medizin nach dem Vorbild von Libellenflügeln.
15.02.2021
Zytologie | Biochemie
Unterschätzte Helfer: Membranbausteine steuern Zellwachstum entscheidend mit
Lipide sind die Bausteine für die Hülle von Zellen, die Zellmembran.
15.02.2021
Ökologie | Virologie
Wasser kann Säugetierviren übertragen
Wasser ist Voraussetzung für alles Leben, aber seine Verfügbarkeit kann begrenzt sein.
15.02.2021
Paläontologie
Neuer alter Pfleilschwanzkrebs aus Franken
Ein Paläontologen-Team entdeckte in Franken einen neuen 197 Millionen Jahre alten Pfeilschwanzkrebs aus der Jurazeit.
15.02.2021
Biochemie
Blüten des Johanniskrautes dienen als grüner Katalysator
In einem aktuellen Projek wurden erstmals getrocknete Blüten des Johanniskrautes als aktiver Katalysator in verschiedenen photochemischen Reaktionen eingesetzt. Dieses konzeptionell neue und nachhaltige Verfahren wurde als deutsches Patent angemeldet und in der Fachzeitschrift Green Chemistry vorgestellt.
15.02.2021
Land-, Forst- und Viehwirtschaft
Neue Apfel-Sorte soll das Immunsystem auf Trab bringen
Gute Selen-Versorgung ist in Pandemiezeiten besonders wichtig. Der neue Apfel Selstar® der Hochschule Osnabrück hat im Vergleich zu anderen Äpfeln einen zehnmal so hohen Selen-Gehalt. Man feiert nun seine breite Markteinführung von Osnabrück bis Berlin.