Erstes Gewebe-Modell der Leber hergestellt - Das Ende für Tierversuche?



Bio-News vom 08.05.2024

Wissenschaftlerinnen und Wissenschaftler der TU Berlin haben mit Hilfe von 3D-Biodruck erstmals ein Modell der Leber aus menschlichen Zellen hergestellt, ohne dabei auf Materialien tierischen Ursprungs zurückgreifen zu müssen. Dieser Erfolg ist ein wichtiger Schritt hin zu biomedizinischer Forschung und Lehre, die vollständig auf Methoden ohne Tierleid aufbaut.

Bisher ist es nämlich so, dass auch Ersatzmethoden für Tierversuche zum Beispiel Nährlösungen verwenden, die aus den Föten von Kälbern gewonnen werden. Und unter anderem für den 3D-Druck von Organmodellen benötigte man bisher strukturbildende Stoffe, die aus Tumoren stammen, die man in Mäusen wachsen lässt. Neben diesen ethischen Aspekten verbessert eine biomedizinische Forschung ganz ohne tierische Komponenten auch die Übertragbarkeit ihrer Ergebnisse auf den Menschen – was auf schnellere Erfolge bei der Entwicklung von Medikamenten hoffen lässt.


Nun wurde das erste Gewebe-Modell der Leber völlig ohne Materialien tierischer Herkunft hergestellt, was diese Labormaus wohl sehr freuen wird.

Publikation:


Ahmed S. M. Ali et al.
Xeno-Free 3D Bioprinted Liver Model for Hepatotoxicity Assessment

Int. J. Mol. Sci. 25(3), 1811 (2024)

DOI: 10.3390/ijms25031811



„In Deutschland ist es eigentlich verboten, trächtige Kühe zu schlachten“, erklärt Prof. Dr. Jens Kurreck, Leiter des Fachgebiets Angewandte Biochemie an der TU Berlin. Wenn eine Trächtigkeit vor Schlachtung doch nicht erkannt würde, sei es üblich, dem Fötus Blut abzunehmen. Denn dieses enthält viele Stoffe, die das Wachstum anregen und daher für die Vermehrung von Zellen in der biologischen Forschung ideal geeignet sind. Das aus dem Blut gewonnene „fötale Kälberserum“ ist ein Standardprodukt in jedem Zellkultur-Labor.

Vermutlich mehr als zwei Millionen Kälberföten pro Jahr

„Über die Zahl der hierfür benötigten Kälberföten gibt es nur grobe Schätzungen. Eine Veröffentlichung von 2021 geht von weltweit zwei Millionen aus, und seitdem hat der Verbrauch von fötalem Kälberserum eher zugenommen“, sagt Kurreck. Ein Großteil davon komme aus Schlachtungen im Nicht-EU-Ausland und könne daher nur schlecht von deutschen oder europäischen Institutionen überwacht werden. „Weil sich das Kälberserum so gut für die Kultivierung von Zellen eignet, wird es natürlich auch von den Forscherinnen und Forschern verwendet, die mit Hilfe von Zellkulturen Tierversuche ersetzen wollen. Also bis vor Kurzem auch von uns.“


Biodruck von 3D-Gewebemodellen.

Mäuse mit Tumoren von einem Fünftel ihres Körpergewichts

Weil die Arbeitsgruppe von Jens Kurreck das für die Herstellung von Organmodellen zum Ersatz von Tierversuchen besonders vielversprechende Verfahren des 3D-Biodrucks verwendet, mussten die Wissenschaftlerinnen und Wissenschaftler bisher auch noch auf ein zweites tierisches Produkt zurückgreifen, das aus extra dafür gezüchteten Tieren gewonnen wird.

„Mit Hilfe des 3D-Drucks können wir aus menschlichen Zellen kleine, dreidimensionale Organmodelle herstellen, die sogar künstliche Blutgefäße enthalten können. Dafür brauchen wir aber Stoffe wie Laminine und Kollagene, die diesen Gebilden die notwendige festere Struktur geben, als dies bei normalen Zellkulturen der Fall ist“, erklärt der Forscher. Sie finden sich in hohen Konzentrationen in einer speziellen Form der sogenannten extrazellulären Matrix, die die Zellen im Körper von Menschen und Tieren geflechtartig umgibt und den Kontakt zwischen ihnen vermittelt.


Wissenschaftler am Biodrucker.

Gewonnen wird diese Substanz mit der Abkürzung BME (für „Basement Membrane Extract“) aus Tumoren, die man in Mäusen wachsen lässt. „Am Ende wiegt solch ein Tumor etwa vier Gramm, bei einem Körpergewicht der Maus von vielleicht zwanzig Gramm. Schon an diesem Verhältnis sieht man, dass dieses Verfahren eine nicht unerhebliche Beeinträchtigung für das Tier darstellt.“ Weil die strukturfördernden Stoffe aus dem BME auch in anderen Zellkultur-Laboren routinemäßig für verschiedene Anwendungen gebraucht werden, ginge die Zahl der zur Herstellung verwendeten Tiere sicher in die Tausende, sagt Jens Kurreck.

Tierische Komponenten machen die Forschung weniger verlässlich

Menschliche Zellen, die mit Hilfe von Blutserum aus Kälbern ernährt und zur Vermehrung angeregt werden, aus denen dann mit Hilfe strukturfördernder Stoffe aus Mäuse-Tumoren menschliche Organmodelle gedruckt werden: „Wenn man sich diese Produktionsschritte vor Augen führt, erkennt man eigentlich schon, dass sich hier ein Potential für Fehler auftut, wenn man aus Experimenten mit diesen Organmodellen auf die tatsächlichen Vorgänge im menschlichen Körper schließen will“, erklärt Kurreck. Und dabei seien die Organmodelle aus menschlichen Zellen im Prinzip schon wesentlich besser in ihrer Vorhersagekraft als entsprechende Tierversuche, wenn es um die gleiche Fragestellung geht. Hier werden zwar auch schon beispielsweise menschliche Tumorzellen in Tiere eingebracht. Diese menschlichen Zellen liegen dann aber immer noch in Tiergewebe als Umgebung und kommunizieren auch mit diesen tierischen Zellen, was eine Übertragbarkeit der Erkenntnisse auf den Menschen sehr erschwert.

Hinzu komme, so Kurreck, dass die genaue Zusammensetzung tierischer Produkte wie etwa des fötalen Kälberserums immer schwanke. Man könne sich also nicht darauf verlassen, dass die eine Charge zum Beispiel das Wachstum der Zellen genauso anregt wie die andere. „90 Prozent aller im Labor und in Tierversuchen aussichtsreichen Kandidaten für Arzneimittel und sogar 97 Prozent aller Kandidaten für Krebsmedikamente scheitern letztlich bei der Erprobung am Menschen. Will man hier besser werden, muss das Ziel sein, irgendwann ganz ohne Tierversuche und auch ganz ohne tierische Zusatz- und Hilfsstoffe auszukommen.“

Chemisch genau definierte Nährmedien und Strukturstoffe aus menschlichen Quellen

Mit dem ersten Gewebe-Modell der Leber völlig ohne Materialien tierischer Herkunft ist dem Doktoranden Ahmed Ali und weiteren Mitgliedern aus der Arbeitsgruppe von Jens Kurreck nun ein großer Schritt in diese Richtung gelungen. Sie haben dafür das fötale Kälberserum durch ein chemisch genau definiertes Nährmedium aus Wachstumsfaktoren, Insulin, Selen sowie Zuckern und Salzen ersetzt. „Wir mussten dieses Nährmedium nicht nur auf den speziellen Typ der von uns verwendeten menschlichen Leberzellen anpassen, sondern die Zellen auch in einem langsamen Prozess an die neue Umgebung gewöhnen“, erzählt Kurreck. Denn geliefert wurden die Ausgangszellen für den Start des Experiments natürlich noch von einer Firma, die Kälberserum zu ihrer Vermehrung genutzt hatte.

Als Ersatz für das strukturfördernde Gemisch BME aus den Mäuse-Tumoren verwendeten die Wissenschaftlerinnen und Wissenschaftler humanes Kollagen aus Plazentas, die in Wiener Krankenhäusern nach Geburten sonst als Abfall entsorgt worden wären. „Was sich so einfach anhört, war in der Praxis ein komplexer Anpassungsprozess, der viel Ausprobieren und auch eine umfassende Literaturrecherche notwendig machte“, sagt Jens Kurreck. So mussten zum Beispiel die Plastikschalen, in denen die Zellen kultiviert wurden, extra mit humanem Kollagen aus den Plazentas beschichtet werden, um eine ähnlich gute Haftung wie bei der herkömmlichen Methode zu erreichen.

Testergebnisse bestätigen die Gleichwertigkeit der tierleidfreien Methode

Um ihr neues, tierleidfreies Leber-Modell zu testen, haben die Forscherinnen und Forscher es in Kontakt mit dem Giftstoff Okadasäure gebracht, der von Algen produziert wird, sich in Muscheln ansammelt und zu schweren Fischvergiftungen führen kann. Es zeigte sich, dass zweidimensionale gedruckte Strukturen der Zellen die gleiche Empfindlichkeit gegenüber dem Giftstoff aufwiesen, egal ob sie mit den alten oder den neuen Substanzen ohne tierische Herkunft gezüchtet und gedruckt worden waren. Ein dreidimensionales Gewebemodell der Leber wies ebenfalls die von den Forschern für diesen Fall erwartete Empfindlichkeit auf.



Diese Newsmeldung wurde mit Material der Technischen Universität Berlin via Informationsdienst Wissenschaft erstellt.


warte
warte
warte
warte
warte
warte
warte
warte
warte
warte