2-Cyclohexen-1-on
- Seiten mit Skriptfehlern
- Wikipedia:Vorlagenfehler/Vorlage:Alfa
- Wikipedia:Vorlagenfehler/Vorlage:Merck
- Wikipedia:Vorlagenfehler/Vorlage:Infobox Chemikalie
- Wikipedia:Wikidata-Wartung:PubChem abweichend
- Wikipedia:Wikidata-Wartung:DrugBank fehlt lokal
- Feuergefährlicher Stoff
- Beschränkter Stoff nach REACH-Anhang XVII, Eintrag 40
- Giftiger Stoff bei Verschlucken
- Giftiger Stoff bei Einatmen
- Giftiger Stoff bei Hautkontakt
- Wikipedia:Wikidata-Wartung:CAS-Nummer fehlt lokal
- Cyclohexenon
Strukturformel | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Allgemeines | ||||||||||
Name | 2-Cyclohexen-1-on | |||||||||
Andere Namen |
Cyclohex-2-enon | |||||||||
Summenformel | C6H8O | |||||||||
Kurzbeschreibung |
farblose Flüssigkeit[1] | |||||||||
Externe Identifikatoren/Datenbanken | ||||||||||
| ||||||||||
Eigenschaften | ||||||||||
Molare Masse | 96,13 g·mol−1 | |||||||||
Aggregatzustand |
flüssig | |||||||||
Dichte |
0,99 g·cm−3 (20 °C)[1] | |||||||||
Schmelzpunkt |
−53 °C[1] | |||||||||
Siedepunkt |
167–169 °C[1] | |||||||||
Dampfdruck |
1011 hPa (168 °C)[1] | |||||||||
Löslichkeit |
löslich in Wasser[2] | |||||||||
Sicherheitshinweise | ||||||||||
| ||||||||||
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen. |
2-Cyclohexen-1-on ist eine chemische Verbindung aus der Gruppe der Enone, d.h. ein Keton mit C=C-Doppelbindung. Die Substanz ist im reinen Zustand eine farblose Flüssigkeit; das kommerziell erhältliche Produkt ist meist gelblich gefärbt.
Gewinnung und Darstellung
Zur Herstellung von 2-Cyclohexen-1-on gibt es mehrere verschiedene Synthesewege, von denen nur einige hier genannt seien:
Eine für den Labormaßstab gut ausgearbeitete Methode ist die Reduktion und saure Hydrolyse von 3-Ethoxy-2-cyclohexen-1-on, welches wiederum aus Resorcin über das 1,3-Cyclohexandion zugänglich ist:
Steht flüssiges Ammoniak zur Verfügung, ist es ausgehend von Anisol durch Birch-Reduktion mit anschließender saurer Hydrolyse und Umlagerung der C–C-Doppelbindung erhältlich:
Ebenfalls recht gut ist es aus Cyclohexanon durch α-Bromierung und Eliminierung, oder aus 3-Chlorcyclohexen mittels Hydrolyse und Oxidation erhältlich.
Technisch wird 2-Cyclohexen-1-on durch katalytische Oxidation von Cyclohexen, z. B. mit Wasserstoffperoxid an Vanadiumkatalysatoren, hergestellt. Es sind mehrere Verfahrensvarianten mit unterschiedlichen Oxidationsmitteln bzw. Katalysatoren patentiert.
Eigenschaften
Physikalische Eigenschaften
2-Cyclohexen-1-on ist mit einem Schmelzpunkt von −53 °C und einem Siedepunkt von etwa 170 °C bei Raumtemperatur eine leichtbewegliche, klare Flüssigkeit, die mit 0,993 g·cm−3 eine Dichte ähnlich der von Wasser aufweist.
Es ist mit vielen Lösungsmitteln, wie z. B. Alkoholen (Methanol, Ethanol), Ethern (Diethylether, Tetrahydrofuran, 1,4-Dioxan, tert-Butylmethylether), Halogenalkanen (Dichlormethan, Chloroform), Estern (Ethylacetat) und auch mit polaren, aprotischen Lösungsmitteln (N,N-Dimethylformamid, Dimethylsulfoxid) unbegrenzt mischbar.
Die Löslichkeit in Wasser beträgt 41,3 g·l−1 bei pH 7 und 25 °C.
Chemische Eigenschaften
2-Cyclohexen-1-on kann sowohl übliche Reaktionen von Ketonen (z. B. Acetalbildung) als auch von Alkenen (z. B. elektrophile Additionen, Cycloadditionen, Epoxidierung) eingehen. Als typischer Vertreter der α,β-ungesättigten Carbonylverbindungen besitzt es eine elektronenarme C–C-Doppelbindung, die auch als Elektrophil fungieren kann. Mit starken Basen kann es an den Positionen 4 und 6 (die beiden CH2-Gruppen, die der Carbonylgruppe bzw. der C–C-Doppelbindung benachbart sind) deprotoniert werden.
Verwendung
Es ist ein oft verwendeter Synthesebaustein in der organischen Chemie, da es viele verschiedene Möglichkeiten der Molekülgerüst-Erweiterungen bietet. Beispielsweise kann es leicht in einer Michael-Addition mit Nukleophilen (wie etwa Enolaten oder Silylenolethern) oder auch im Sinne einer Diels-Alder-Reaktion mit elektronenreichen Dienen umgesetzt werden. Weiterhin reagiert es mit Organokupfer-Verbindungen unter 1,4-Addition (Michael-Addition) oder mit Grignard-Verbindungen unter 1,2-Addition, d. h. mit Angriff des Nukleophils am Carbonyl-Kohlenstoffatom. Es wird z. B. in mehrstufigen Totalsynthesen beim Aufbau von polycyclischen Naturstoffen eingesetzt.
Einzelnachweise
Literatur
- W. F. Gannon, H. O. House, Organic Synthesis, Coll. Vol. 5, 1973, S. 294.
- W. F. Gannon, H. O. House, Organic Synthesis, Coll. Vol. 5, 1973, S. 539.
- R. B. Thompson, Organic Synthesis, Coll. Vol. 3, 1955, S. 278.