Crossing-over
Die Begriffe chromosomales Crossing-over (chromosomale Überkreuzung) bzw. chromosomale Rekombination bezeichnen in der Genetik einen Stückaustausch zwischen väterlichen und mütterlichen Chromosomen während der Entwicklung der Keimzellen, genauer während der Meiose. An die nachfolgende Generation werden also Chromosomen weitergegeben, die eine Mischung aus väterlichen und mütterlichen Abschnitten darstellen und dadurch eine große genetische Vielfalt ermöglichen. Das Crossing-over findet während der Zellkernteilung im synaptonemalen Komplex (einer Struktur im Zellkern) in der Prophase I statt. Die lichtmikroskopisch sichtbare Folge dieser chromosomalen Rekombination sind Überkreuzungen zweier Chromatiden.
Ablauf
Vor der Meiose kommt es zunächst zu einer normalen Verdopplung der DNA, so dass alle Chromosomen mit zwei Chromatiden vorliegen. Während der Meiose lagern sich in der Prophase I die zwei homologen Chromosomen, also die sich jeweils entsprechenden mütterlichen und väterlichen, aneinander an: Zwischen ihnen bildet sich der Synaptonemale Komplex aus. Die Phase der Anlagerung wird als Zygotän, die sich daran anschließende Phase der Paarung als Pachytän bezeichnet. Die entstehende Struktur wird als Bivalent (da zwei Chromosomen vorhanden sind) oder als Tetrade (da vier Chromatiden vorhanden sind) bezeichnet.
In manchen Eukaryoten ist die Ausbildung des synaptonemalen Komplexes nur möglich, wenn die Rekombination bereits begonnen hat, in anderen kann er auch ohne begonnene Rekombination ausgebildet werden. Der Rekombinationsprozess wird jedoch immer innerhalb des Synaptonemalen Komplexes beendet.[1]
Die Bruchstellen in den Chromosomen werden dabei „über Kreuz“ (crossing over = Überkreuzung) zusammengesetzt. Daher werden ganze Chromosomenbereiche zwischen zwei Chromosomen ausgetauscht. Die DNA-Einzelstränge werden aufgetrennt, und es bilden sich sogenannte Holliday-Junctions.
Im weiteren Verlauf der Meiose verkürzen sich die neu kombinierten homologen Zwei-Chromatiden-Chromosomen und weichen in Richtung der Zellpole auseinander, weil sie entlang des Spindelapparats dorthin wandern. Hat ein Crossing-over stattgefunden, bleiben die Chromatiden an den Stellen des falsch verschmolzenen Bereichs jedoch etwas länger aneinander hängen, was im Lichtmikroskop als Chiasma (eine Figur entsprechend dem griechischen Chi) zu beobachten ist. Es entstehen Mosaikchromatiden, die sowohl väterliches als auch mütterliches Erbgut enthalten.
Das Crossing-over ist die Voraussetzung für die intrachromosomale Rekombination und sorgt mit dafür, dass neue Merkmalskombinationen bei den sich geschlechtlich fortpflanzenden Lebewesen entstehen.
Inäquales Crossing-over
Kommen bei der Tetradenbildung zwei paraloge oder sehr ähnliche nichthomologe Sequenzen, wie etwa naheliegende Transposons oder bei Satelliten-DNA, zum Übereinanderliegen, so kann es zu nichthomologem, oder inäqualem Crossing-over kommen. Dies kann zwischen Nicht-Schwesterchromatiden bei der Meiose oder zwischen Schwesterchromatiden bei der Mitose geschehen. Dabei gehen auf einem Strang Informationen verloren (Deletion), auf dem anderen kommt es zu einer Insertion bzw. Duplikation. Dieses Phänomen ist ein bedeutender Faktor in der Evolution von Genfamilien, kann jedoch auch zu Krankheiten wie zum Beispiel Chorea Huntington führen.
Weblinks
Einzelnachweis
- ↑ Alberts et al., Molecular Biology of the Cell, 4. Aufl. 2002, online über das „NCBI-Bookshelf“