Imidacloprid

Strukturformel
Imidacloprid
Allgemeines
Name Imidacloprid
Andere Namen

1-(6-Chlor-3-pyridinylmethyl)- N-nitroimidazolidin-2-ylidenamin

Summenformel C9H10ClN5O2
CAS-Nummer
  • 105827-78-9
  • 138261-41-3
PubChem 86418
ATC-Code

QP53AX17

Eigenschaften
Molare Masse 255,66 g·mol−1
Aggregatzustand

fest

Dichte

1,54 g·cm−3 [1]

Schmelzpunkt

136,4 oder 143,8 °C (zwei Kristallformen) [1]

Dampfdruck

0,2 µPa (20 °C) [1]

Löslichkeit

in Wasser 0,51 g·l−1, in Dichlormethan 50–100 g·l−1, in 2-Propanol 1–2 g·l−1 [1]

Sicherheitshinweise
Bitte die eingeschränkte Gültigkeit der Gefahrstoffkennzeichnung bei Arzneimitteln beachten
GHS-Gefahrstoffkennzeichnung aus EU-Verordnung (EG) 1272/2008 (CLP) [2]
07 – Achtung 09 – Umweltgefährlich

Achtung

H- und P-Sätze H: 302-410
P: 273-​501 [3]
EU-Gefahrstoffkennzeichnung aus EU-Verordnung (EG) 1272/2008 (CLP) [2]
Gesundheitsschädlich
Gesundheits-
schädlich
(Xn)
R- und S-Sätze R: 22
S: keine S-Sätze
LD50

410 mg·kg−1 (Ratte, peroral) [3]

Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.
Vorlage:Infobox Chemikalie/Summenformelsuche vorhanden


Imidacloprid ist ein systemisches Insektizid aus der Gruppe der Neonicotinoide. Die Substanz wurde 1985 in den Labors der Bayer AG erstmals synthetisiert. Bayer stellt Imidacloprid seit Anfang der 1990er-Jahre im industriellen Maßstab her, es wird in etwa 120 Ländern der Erde eingesetzt. Einige Experten nehmen an, dass Imidacloprid derzeit das weltweit meistverwendete Insektizid ist.

Gewinnung und Darstellung

Imidacloprid kann ausgehend von 2-Chlor-5-formylpyridin durch eine mehrstufige Reaktion mit Ethylendiamin, Natriumborhydrid, Bromcyan und Salpetersäure gewonnen werden.[4]

Es sind auch alternative Synthesevarianten wie zum Beispiel durch Reaktion von Ethylendiamin mit Bromcyan und Salpetersäure zu 2-Nitroimin-imidazolidin und dessen Reaktion mit 2-Chlor-5-chlormethylpyridin bekannt.[4]

Wirtschaft

Der jährliche Absatz in Deutschland liegt im Bereich von 25–100 t, über 1.000 t werden exportiert. Der erzielte Umsatz liegt bei etwa 500–600 Millionen Euro, damit ist Imidacloprid das erfolgreichste Produkt von Bayer CropScience, der Agrarsparte des Konzerns. Handelsnamen für das Insektizid sind Admire, Confidor, Connect, Evidence, Gaucho, Leverage, Lizetan, Muralla, Provado und Trimax.

Wirkungsweise

Imidacloprid ist ein systemisches Insektizid, das als Kontakt- wie auch Fraßgift wirken kann. Es wird gut über die Wurzeln aufgenommen und in die Blätter transportiert, die dann vor beißenden und saugenden Insekten geschützt sind. Wird es direkt auf die Blätter ausgebracht, verteilt es sich zwischen Blattober- und Blattunterseite und wird auch zu neugebildeten Blättern hin weitertransportiert. Da Imidacloprid in der Pflanze nur langsam abgebaut wird, hält seine Wirkung längere Zeit an.

Beim Insekt wirkt Imidacloprid wie Acetylcholin am nikotinischen Acetylcholinrezeptor der Nervenzellen, es wird aber nicht durch das Enzym Acetylcholinesterase abgebaut. Durch den ausgelösten Dauerreiz wird die chemische Signalübertragung gestört.

Verwendung

Pflanzenschutz

In Deutschland, Österreich und der Schweiz sind zahlreiche imidaclopridhaltige Pflanzenschutzmittel zugelassen.[5] Sie kommen beispielsweise als Suspension, wasserlösliches Konzentrat, Granulat, Stäbchen (für Topfpflanzen), Schlämmpulver (zur Saatgutbehandlung) oder Spray in den Handel. Imidacloprid ist häufig der einzige Wirkstoff, es gibt auch Kombinationspräparate mit dem Pyrethroid Tefluthrin, dem Carbamat Methiocarb, anderen insektiziden Wirkstoffen und mit Nährstoffen.

Imidacloprid kann zur Saatgutbeizung bei Zucker- und Futterrüben, Getreide, Kartoffeln, Mais, Zwiebeln und dem Ölkürbis eingesetzt werden. Hier wirkt es beispielsweise gegen Pflanzenläuse, Drahtwürmer, Kartoffelkäfer sowie die Frit-, Zwiebel- und Rübenfliege. In Deutschland und Österreich ist Imidacloprid zur Saatgutbehandlung beim Raps (gegen den Rapserdfloh) zugelassen, in der Schweiz nicht.[6]

In Haus- u. Kleingärten wird Imidacloprid gegen Pflanzenläuse (einschließlich der Weißen Fliege) und Thripse eingesetzt.

Tiermedizin

Imidacloprid kann seit 1996 gegen Tierläuse und Flöhe bei Hunden und Katzen verwendet werden. Handelsnamen sind Advantage, Advantix (Kombinationspräparat mit Permethrin), Advocate (Kombinationspräparat mit Moxidectin) und Seresto (Kombinationspräparat mit Flumethrin).

Toxizität und Ökotoxizität

Die akute Toxizität von Imidacloprid ist für Säugetiere gering, an männlichen Ratten wurde als LD50 424 mg/kg Körpergewicht ermittelt. Bei dreimonatigen Fütterungstests betrug die NOEC (no observed effect concentration) bei Rattenmännchen 150, bei Rattenweibchen 600 und bei Hunden 200 mg/kg Futter. Imidacloprid hat keine Reizwirkung auf Haut oder Augen. Die Substanz hat vermutlich eine schwach teratogene und mutagene Wirkung. Sie gilt als nicht krebserregend. Über den Magen-Darm-Trakt wird Imidacloprid schnell in den Körper aufgenommen. Innerhalb von 48 Stunden wird es im Körper nahezu vollständig abgebaut (ca. 80 %) oder unverändert ausgeschieden (ca. 20 %).

Für Wasserlebewesen ist Imidacloprid mäßig giftig, die letale Konzentration im 96-Stunden-Test liegt für die Regenbogenforelle bei 211 mg/L. Beim Dauertest mit Regenbogenforellen über 21 Tage war unterhalb einer Konzentration von 28,5 mg/L kein Effekt mehr zu beobachten. Wasserflöhe (Daphnia magna) sind empfindlicher, nach 48 Stunden führten 85 mg/L dazu, dass die Hälfte der Daphnien ihre Ruderbewegungen einstellte. Über 21 Tage hinweg traten erst bei Konzentrationen unterhalb 1,8 mg/L keinerlei Wirkungen bei Daphnien mehr auf.

Imidacloprid ist giftig für Vögel, die letale Dosis für Kanarienvögel und Tauben liegt im Bereich von 25–50 mg/kg Körpergewicht. Wenn Vögel gebeiztes Saatgut von den Feldern aufpicken, besteht für sie die Gefahr akuter Vergiftungen.

Der Wirkstoff wird in der Umwelt nur langsam abgebaut. Die Abbaugeschwindigkeit ist von der Intensität des Bodenlebens abhängig. Bei einer Untersuchung war auf bewachsenem Boden innerhalb von 48 Tagen die Hälfte des ausgebrachten Imidacloprids zersetzt, auf unbewachsenem Boden war dieser Zustand erst nach 190 Tagen erreicht.

Wirkung auf Bienen und Hummeln

Die Gefährlichkeit von Imidacloprid für Honigbienen war lange Zeit umstritten. 2012 veröffentlichten Biologen der Harvard Universität jedoch eine Studie, die einen direkten Zusammenhang zwischen dem Wirkstoff und dem Sterben von Bienenvölkern feststellt. Dabei starben 94 % aller beobachteten Bienen innerhalb von 23 Wochen, obwohl sie teilweise deutlich geringeren Dosen ausgesetzt waren, als solchen, die in der Nähe behandelter Felder oder an behandeltem Saatgut vorliegen.[7] Laut den Forschern beeinträchtigt das Insektizid auch die Lern- und Gedächtnisleistung der Bienen. So sammelten diese noch Nektar mit hohem Zuckergehalt. Außerdem informierten die geschädigten Bienen per Schwänzeltanz deutlich weniger Mitbewohner des Stockes über die Lage einer Nahrungsquelle. Beide Verhaltensänderungen verschlechtern die Versorgung eines Bienenvolks mit Nektar und könnten die Anfälligkeit für Krankheiten erhöhen.[8]

Viele Imker machen Imidacloprid für die in den letzten Jahren aufgetretenen schweren Schäden an ihren Bienenvölkern verantwortlich. Das neue Phänomen des Massensterbens von Bienenvölkern erregt die Diskussion noch mehr. Der französische Bienenzüchterverband gibt an, dass die Zahl der Bienenvölker in Frankreich zwischen 1996 und 2003 von 1,45 Millionen auf 1 Million zurückging. Zwischen 1995 und 2001 sank die durchschnittliche Honigernte pro Stock von 75 kg auf 30 kg. In Frankreich und den Niederlanden wurde der Einsatz von Imidacloprid zur Saatgutbeizung bei Sonnenblumen 1999 verboten.

Französische Forscher haben in ihrem Abschlussbericht zum Bienensterben 2003 festgestellt, dass das Beizung von Saatgut mit Gaucho® zu einem signifikanten Risiko für Bienen führt. [9] Daraufhin wurde die Zulassung als Saatgutbeizmittel 2004 in Frankreich auch bei Mais durch Umweltminister Hervé Gaymard ausgesetzt. Einige Zulassungsbehörden gehen jedoch weiter davon aus, dass keine Gefährdung der Bienen zu befürchten ist.

Bei Hummeln ist eine negative Wirkung 2012 bewiesen worden[10]. Betroffene Staaten produzierten 83 % weniger Königinnen, insgesamt blieben die Staaten kleiner.

Die gegensätzliche Beurteilung von Zulassungsbehörden und Forschungseinrichtungen erklärt sich über den neurotoxischen Wirkmechanismus von Imidacloprid bei Bienen. Betroffene Bienen sterben nicht sofort, sondern verlieren lediglich die Orientierung und finden immer schwieriger den Weg zurück zum Bienenstock. Dadurch kommt es zur Mangelversorgung des Volkes aufgrund der geschädigten Arbeiterinnen, welches in der Folge anfälliger für Krankheiten wird. Solche chronischen und kumulativen Wirkungen werden jedoch von den gängigen Zulassungstests nicht erfasst. Diese beurteilen lediglich die akute toxische Wirkung auf einzelne Bienen.[11]

Literatur

  • Werner Perkow: Wirksubstanzen der Pflanzenschutz- und Schädlingsbekämpfungsmittel. 2. Auflage, Erg. Lfg. Mai 1994, Verlag Paul Parey
  • Caroline Cox: Insecticide Factsheet Imidacloprid. Journal of Pesticide Reform, Frühjahr 2001, Vol. 21, Nr. 1

Weblinks

Einzelnachweise

  1. 1,0 1,1 1,2 1,3 EXTOXNET: Pesticide Information Profile Imidacloprid.
  2. 2,0 2,1
  3. 3,0 3,1 Datenblatt Imidacloprid bei Sigma-Aldrich, abgerufen am 4. April 2011.
  4. 4,0 4,1  Thomas A. Unger: Pesticide synthesis handbook. 1996, ISBN 978-0815514015, S. 448 (eingeschränkte Vorschau in der Google Buchsuche).
  5. Nationale Pflanzenschutzmittelverzeichnisse: Schweiz, Österreich, Deutschland; abgerufen am 2. Januar 2009.
  6. Stellungnahme des Schweizerischen Bundesrats auf eine Anfrage betreffend mit Imidacloprid behandelten Rapssaatguts.
  7. Use of Common Pesticide, Imidacloprid, Linked to Bee Colony Collapse. Meldung bei ScienceDaily vom 5. April 2012.
  8. Joachim Czichos in Wissenschaft aktuell: Wie ein verbreitetes Pestizid Bienenvölker schwächt, 29. Mai 2012, nach „A nicotinic acetylcholine receptor agonist affects honey bee sucrose responsiveness and decreases waggle dancing“, Daren M. Eiri & James C. Nieh, Journal of Experimental Biology; doi:10.1242/jeb.068718
  9. Abschlussbericht des Comité Scientifique et Technique de l’Etude Multifactorielle des Troubles des Abeilles 2003: http://agriculture.gouv.fr/IMG/pdf/rapportfin.pdf
  10. Whitehorn PR, O’Connor S, Wackers FL, Goulson D, 2012. Neonicotinoid Pesticide Reduces Bumble Bee Colony Growth and Queen Production. In: Science, 2012 (Deutschsprachige Zusammenfassung: Neonicotinoide: Neue Studie sorgt für Aufregung)
  11. Stellungnahme des Kopernikus-Institutes der Universität Utrecht: http://www.bijensterfte.nl/de/node/30

Diese Artikel könnten dir auch gefallen

Die letzten News

03.03.2021
Ökologie | Land-, Forst- und Viehwirtschaft
Produktion nachhaltiger Lebensmittel in Aquakulturen
Eine nachhaltige Lebensmittelproduktion in Aquakulturen ganz ohne Mikroplastik. Das ist das langfristige Ziel eines neuen und über zwei Jahre laufenden Forschungsprojektes.
03.03.2021
Botanik | Biochemie | Entwicklungsbiologie
Wie eine Pflanze ihr Wachstum reguliert
Pflanzen zeigen polares Wachstum: Der Spross von Pflanzen wächst zum Licht, um dieses optimal nutzen zu können und die Wurzeln wachsen in Richtung des Erdmittelpunktes in den Boden.
02.03.2021
Zytologie | Genetik
Genetisches Material in Taschen verpacken
Alles Leben beginnt mit einer Zelle.
02.03.2021
Biodiversität
Artenspürhunde - Schnüffeln für die Wissenschaft
Die Listen der bedrohten Tiere und Pflanzen der Erde werden immer länger.
28.02.2021
Anthropologie | Genetik
64 menschliche Genome als neue Referenz für die globale genetische Vielfalt
Eine internationale Forschungsgruppe hat 64 menschliche Genome hochauflösend sequenziert.
28.02.2021
Neurobiologie | Insektenkunde
Wie Insekten Farben sehen
Insekten und ihre hochentwickelte Fähigkeit Farben zu sehen und zum Beispiel Blüten unterscheiden zu können, sind von zentraler Bedeutung für die Funktion vieler Ökosysteme.
28.02.2021
Genetik | Virologie
Retroviren schreiben das Koala-Genom um
Koalas sind mit zahlreichen Umwelt- und Gesundheitsproblemen konfrontiert, die ihr Überleben bedrohen.
26.02.2021
Ökologie | Paläontologie
Student entwickelt ein neues Verfahren, um Millionen Jahre alte Ökosysteme zu rekonstruieren
Niklas Hohmann, Masterstudent der Geowissenschaften an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), hat einen neuen Algorithmus entwickelt, mit dem sich die Abfolge von Ökosystemen durch die Erdgeschichte besser rekonstruieren lässt.
26.02.2021
Klimawandel | Biodiversität | Land-, Forst- und Viehwirtschaft
Unterirdische Biodiversität im Wandel
Durch den globalen Wandel wird die Vielfalt der Bakterien auf lokaler Ebene voraussichtlich zunehmen, während deren Zusammensetzung sich auf globaler Ebene immer ähnlicher wird.
25.02.2021
Botanik | Ökologie | Klimawandel | Video
Wald im Trockenstress: Schäden weiten sich weiter aus
Ergebnisse der Waldzustandserhebung 2020 zeigen: Die anhaltenden Dürrejahre fordern Tribut.
24.02.2021
Physiologie | Primatologie
Geophagie: Der Schlüssel zum Schutz der Lemuren?
Kürzlich wurde eine transdisziplinäre Forschung über die Interaktionen zwischen Böden und Darm-Mykobiom (Pilze und Hefen) der Indri-Indri-Lemuren veröffentlicht.
24.02.2021
Mikrobiologie | Evolution
Vom Beginn einer evolutionären Erfolgsstory
Unser Planet war bereits lange von Mikroorganismen besiedelt, bevor komplexere Lebewesen erstmals entstanden und sich nach und nach zur heute lebenden Tier- und Pflanzenwelt entwickelten.
24.02.2021
Genetik
Cre-Controlled CRISPR: konditionale Gen-Inaktivierung wird einfacher
Die Fähigkeit, ein Gen nur in einem bestimmten Zelltyp auszuschalten, ist für die modernen Lebenswissenschaften wesentlich.
24.02.2021
Land-, Forst- und Viehwirtschaft | Fischkunde
Bald nur noch ängstliche Fische übrig?
Über die Fischerei werden vor allem größere und aktivere Fische aus Populationen herausgefangen.
23.02.2021
Anthropologie | Neurobiologie
Placebos wirken auch bei bewusster Einnahme
Freiburger Forschende zeigen: Scheinmedikamente funktionieren auch ohne Täuschung. Probanden waren über Placebo-Effekt vorab informiert.
23.02.2021
Botanik | Klimawandel
Auswirkungen des Klimas auf Pflanzen mitunter erst nach Jahren sichtbar
Die Auswirkungen von Klimaelementen wie Temperatur und Niederschlag auf die Pflanzenwelt werden möglicherweise erst Jahre später sichtbar.
23.02.2021
Ökologie | Klimawandel
Biologische Bodenkrusten bremsen Erosion
Forschungsteam untersucht, wie natürliche „Teppiche“ Böden gegen das Wegschwemmen durch Regen schützen.
23.02.2021
Mikrobiologie | Meeresbiologie
Süße Algenpartikel widerstehen hungrigen Bakterien
Eher süß als salzig: Mikroalgen im Meer produzieren jede Menge Zucker während der Algenblüten.
21.02.2021
Evolution | Biochemie
Treibstoff frühesten Lebens – organische Moleküle in 3,5 Milliarden Jahre alten Gesteinen nachgewiesen
Erstmalig konnten biologisch wichtige organische Moleküle in archaischen Fluideinschlüssen nachgewiesen werden. Sie dienten sehr wahrscheinlich als Nährstoffe frühen Lebens auf der Erde.
21.02.2021
Evolution | Biochemie
Origin of Life - Begann die Darwin’sche Evolution schon, bevor es Leben gab?
Ehe Leben auf der Erde entstand, gab es vor allem eines: Chaos.
21.02.2021
Anthropologie | Neurobiologie
Kommunikationsfähigkeit von Menschen im REM-Schlaf
Mit schlafenden Versuchspersonen lassen sich komplexe Nachrichten austauschen. Das haben Wissenschaftler jetzt in Studien gezeigt.
21.02.2021
Paläontologie | Insektenkunde
Fossile Larven - Zeitzeugen in Bernstein
Eine ungewöhnliche Schmetterlingslarve und eine große Vielfalt an Fliegenlarven. LMU-Zoologen haben in Bernstein fossile Bewohner Jahrmillionen alter Wälder entdeckt.
21.02.2021
Ethologie | Ökologie
Wölfe in der Mongolei fressen lieber Wild- als Weidetiere
Wenn das Angebot vorhanden ist, ernähren sich Wölfe in der Mongolei lieber von Wildtieren als von Weidevieh.
21.02.2021
Meeresbiologie
Neuer Wohnort im Plastikmüll: Biodiversität in der Tiefsee
Ein internationales Forscherteam findet einen neuen Hotspot der Biodiversität – und zwar ausgerechnet im Plastikmüll, der sich seit Jahrzehnten in den Tiefseegräben der Erde ansammelt.
19.02.2021
Meeresbiologie | Land-, Forst- und Viehwirtschaft
Durch Aquakultur gelangt vom Menschen produzierter Stickstoff in die Nahrungskette
Ausgedehnte Aquakulturflächen entlang der Küsten sind in Südostasien sehr verbreitet.