Logistische Funktion


Die logistische Verteilung charakterisiert eine stetige eindimensionale Wahrscheinlichkeitsverteilung und ist eine funktionelle Darstellung von Sättigungsprozessen aus der Klasse der sogenannten Sigmoidfunktionen mit unbegrenzter zeitlicher Ausdehnung.

Noch bis ins 20. Jahrhundert wurde gelegentlich auch der Logarithmus mit dem italienischen Namen der logistischen Kurve (curva logistica) belegt. Heute ist der Name eindeutig der S-Funktion zugeordnet.

Beschreibung

Datei:Logistisch.svg
Logistische Funktion für den Fall G=1, k=1, f(0)=1/2

Die logistische Funktion, wie sie sich aus der diskreten logistischen Gleichung ergibt, beschreibt den Zusammenhang zwischen der verstreichenden Zeit und einem Wachstum, beispielsweise einer idealen Bakterienpopulation. Hierzu wird das Modell des exponentiellen Wachstums modifiziert durch eine sich mit dem Wachstum verbrauchende Ressource – die Idee dahinter ist also etwa ein Bakteriennährboden begrenzter Größe. In der Praxis beginnt die Funktion nicht bei 0, sondern zur Anfangszeit liegt schon ein Anfangswert f(0) vor.

Für das Bakterienbeispiel gilt also:

  • Der begrenzte Lebensraum bildet eine obere Schranke G für die Bakterienanzahl f(t).
  • Das Bakterienwachstum f'(t) ist proportional zu:
    • dem aktuellen Bestand f(t)
    • der noch vorhandenen Kapazität G − f(t)

Diese Entwicklung wird daher durch eine Differentialgleichung der Form

$ f'(t)=k\cdot f(t)\cdot \left(G-f(t)\right) $

mit einer Proportionalitätskonstanten $ k $ beschrieben. Das Lösen dieser Differentialgleichung ergibt:

$ f(t)=G\cdot {\frac {1}{1+e^{-k\cdot G\cdot t}\left({\frac {G}{f(0)}}-1\right)}} $

Der Graph der Funktion beschreibt eine S-förmige Kurve, eine Sigmoide. Am Anfang ist das Wachstum klein, da die Population und somit die Zahl der sich vermehrenden Individuen gering ist. In der Mitte der Entwicklung (genauer: im Wendepunkt) wächst die Population am stärksten, bis sie durch die sich erschöpfenden Ressourcen gebremst wird.

Weitere Anwendungen

Die Logistische Gleichung beschreibt einen sehr häufig auftretenden Zusammenhang und findet weit über die Idee der Beschreibung einer Population von Lebewesen hinaus Anwendung. Auch der Lebenszyklus eines Produktes im Markt kann mit der Logistischen Funktion nachgebildet werden. Weitere Anwendungsbereiche sind Wachstums- und Zerfallsprozesse in der Sprache (Sprachwandelgesetz, Piotrowski-Gesetz) sowie die Entwicklung im Erwerb der Muttersprache (Spracherwerbsgesetz). Eine Anwendung findet die logistische Funktion auch im SI-Modell der mathematischen Epidemiologie.

Lösung der Differentialgleichung

Bezeichnet man die Werte der gesuchten Lösung mit $ y $, so erhält man

$ {\frac {\mathrm {d} y}{\mathrm {d} t}}\,=\,k\cdot y\cdot \left(G-y\right) $

Die Differentialgleichung lässt sich mit dem Verfahren „Trennung der Variablen“ lösen. Dazu bringen wir die Variable Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): t nach links und die Variable Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): y nach rechts.

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): k\mathrm{d}t \,=\, \frac{1}{y(G-y)}\mathrm{d}y \,=\, \frac{1}{G}\left(\frac{1}{y} + \frac{1}{G-y}\right) \mathrm{d}y ,

wobei man die letzte Gleichung für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): G\neq0 durch eine Partialbruchzerlegung oder durch eine einfache Rechnung erhält. Wir bringen das Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): G auf die linke Seite und erhalten durch Integration mit einer noch zu bestimmenden Integrationskonstanten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): c :

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): kGt+c \,=\, \ln y - \ln (G-y) \,=\, \ln \frac{y}{G-y} ,

solange die Werte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): y zwischen 0 und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): G liegen, was wegen der Voraussetzung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): 0 < f(0) < G angenommen werden kann. Dabei ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \ln der natürliche Logarithmus. Die Anwendung der Exponentialfunktion auf beiden Seiten führt zu

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): e^{kGt+c} \,=\, \frac{y}{G-y} .

und anschließende Kehrwertbildung zu

$ (*)\quad \quad \quad e^{-kGt-c}\,=\,{\frac {G-y}{y}}\,=\,{\frac {G}{y}}-1 $.

Wir bringen nun die 1 auf die linke Seite, bilden dann erneut den Kehrwert, und erhalten schließlich

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \frac{y}{G} \,=\, \frac{1}{1+e^{-kGt-c}}

und daraus

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (**) \quad\quad\quad y \,=\, G\cdot \frac{1}{1+e^{-kGt-c}}

Zur Bestimmung der Integrationskonstanten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): c setzen wir in der mit (*) bezeichneten Gleichung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): t=0 . Der zugehörige Funktionwert Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): y ist $ f(0) $ und wir finden

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): e^{-c} = e^{-kG0-c} = \frac{G}{f(0)}-1 .

Setzen wir dies in die gefundene Lösung (**) ein und beachten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): y=f(t) , so kommen wir zur oben behaupteten Lösung der logistischen Differentialgleichung:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): f(t) \,=\, G\cdot \frac{1}{1+e^{-kGt-c}} \,=\, G\cdot \frac{1}{1+e^{-kGt}e^{-c}} \,=\,G\cdot \frac{1}{1+e^{-kGt}(\frac{G}{f(0)}-1)}

An dieser Funktionsgleichung liest man leicht ab, dass die Werte immer zwischen 0 und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): G liegen, weshalb die Lösung für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): -\infty < t < \infty gilt. Das kann man im Nachhinein natürlich auch durch Einsetzen in die Differentialgleichung bestätigen.

Berechnung des Wendepunkts

Zur Bestimmung des Wendepunktes der Lösungsfunktion $ f $ bestimmen wir zunächst mittels Produktregel die Ableitungen

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): f'(t) = k \cdot f(t) \cdot (G - f(t))
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): f''(t) = k \cdot f'(t) \cdot (G - f(t)) + k \cdot f(t) \cdot (- f'(t)) = k \cdot f'(t) \cdot (G - f(t) - f(t)) = k \cdot f'(t) \cdot (G - 2 \cdot f(t))

und bestimmen die Nullstelle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): t_W der zweiten Ableitung:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): f''(t_W) = k \cdot f'(t_W) \cdot (G - 2 \cdot f(t_W)) = 0
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): G - 2 \cdot f(t_W) = 0
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): G = 2 \cdot f(t_W)
$ f(t_{W})={\frac {G}{2}} $

Damit kennen wir den Funktionswert im Wendepunkt und stellen fest, dass die Population im Wendepunkt gerade die halbe Sättigungsgrenze überschreitet. Zur Bestimmung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): t_W verwenden wir für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): f(t_W) = \tfrac{G}{2} die Lösungsformel und rechnen wie folgt:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): G \cdot \frac{1}{1+e^{-k \cdot G \cdot t_W} \cdot \left(\frac{G}{f(0)} - 1\right)} = \frac{G}{2}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): 2 = 1+e^{-k \cdot G \cdot t_W} \cdot \left(\frac{G}{f(0)} - 1\right)
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): 1 = e^{-k \cdot G \cdot t_W}\left(\frac{G}{f(0)} - 1\right)
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): e^{k \cdot G \cdot t_W} = \left(\frac{G}{f(0)} - 1\right)
$ k\cdot G\cdot t_{W}=\ln \left({\frac {G}{f(0)}}-1\right) $
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): t_W = \frac{\ln\left(\frac{G}{f(0)} - 1\right)}{k \cdot G}

Damit ist der Wendepunkt vollständig bestimmt und es gibt nur diesen einen. Durch Einsetzen von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): f(t_W) = \tfrac{G}{2} in die erste Ableitung erhält man die maximale Wachstumsgeschwindigkeit:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): f'(t_W) = k \cdot \frac{G}{2} \cdot \left(G - \frac{G}{2} \right) = k \cdot \frac{G}{2} \cdot \frac{G}{2}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): f'(t_W) = \frac{k \cdot G^2}{4}

Weitere Darstellungen

$ f(t)=G\cdot {\frac {1}{1+e^{-k\cdot G\cdot t}\left({\frac {G}{f(0)}}-1\right)}} $
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): =G \cdot \frac{1}{1+e^{-k \cdot G \cdot t}\cdot \frac{G}{f(0)} - e^{-k \cdot G \cdot t}} \cdot \frac{f(0)}{f(0)} = \frac{G \cdot f(0)}{f(0)+e^{-k \cdot G \cdot t}\cdot G - e^{-k \cdot G \cdot t} \cdot f(0)}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): =\frac{G \cdot f(0)}{f(0)+ \left( G - f(0) \right)\cdot e^{-k \cdot G \cdot t}}

oder auch:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): f(t)=\frac{G}{2} \cdot \left( \tanh \left(\frac{kG}{2} (t-t_W) \right) + 1 \right) , wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): t_W die oben berechnete Wendestelle ist: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): t_W = \frac{\ln\left(\frac{G}{f(0)}-1\right)}{k \cdot G}

Siehe auch

  • Logistische Regression

Literatur

  • Nicholas F. Britton: Essential Mathematical Biology. 3. printing. Springer, London u. a. 2005, ISBN 1-85233-536-X, (Springer undergraduate mathematics series).
  • Norman R. Draper, Harry Smith: Applied Regression Analysis. 3rd Edition. Wiley-Interscience, New York NY u. a. 1998, ISBN 0-471-17082-8, (Wiley Series in Probability and Statistics. Texts and References Section).
  • Volker Oppitz, Volker Nollau: Taschenbuch Wirtschaftlichkeitsrechnung. Quantitative Methoden der ökonomischen Analyse. Carl Hanser Verlag, München u. a. 2004, ISBN 3-446-22463-7.
  • Volker Oppitz: Gabler-Lexikon Wirtschaftlichkeitsrechnung. Mit Anwendersoftware für Praxis und Studium. Gabler-Verlag Wiesbaden 1995, ISBN 3-409-19951-9
  • Peter Schönfeld: Methoden der Ökonometrie. 2 Bände. Vahlen, Berlin u. a. 1969–1971.