Posttranslationale Modifikation

Posttranslationale Proteinmodifikationen (PTM) sind Veränderungen von Proteinen, die nach der Translation stattfinden. Die meisten werden durch den Organismus oder durch die Zellen selbst ausgelöst.

An diesen Prozessen sind häufig Proteine beteiligt, die durch Modifizierungsgene (modifier genes) codiert werden. Die Genprodukte solcher Modifizierungsgene können abhängig von Umweltfaktoren gebildet oder funktionalisiert werden und Proteine entsprechend beeinflussen.

Während einige der Prozesse unmittelbar am Entstehungsort ablaufen, finden andere an bestimmten Zellorganellen statt, wieder andere erst außerhalb der produzierenden Zelle.

Neben beabsichtigten Proteinveränderungen treten aber auch ungewollte Proteinmodifikationen auf. Geht man davon aus, dass die Transkriptions- und Translationsmaschinerie bei der Umschrift der Gene über die mRNA zu den Proteinen mit Fehlerquoten von 1/1000 Nukleotiden oder 1/10.000 Aminosäuren arbeiten, so werden durch den Einbau falscher Aminosäuren nicht unerhebliche Mengen misstranslatierter Polypeptidketten produziert. Der Anteil misstranslatierter Proteine, die eigentlich nicht wirklich posttranslational, sondern cotranslational verändert werden, kann durch Anwesenheit von Streptomycin (Störung des Ribosoms) bzw. durch Mangel einzelner Aminosäuren erhöht werden.

Zusätzlich können Proteinketten durch Radikale, durch hochenergetische Strahlung oder andere Proteine (siehe Prionen) beschädigt, verändert oder denaturiert werden und Faltungsisoformen bilden, die der Ursprungskonformation nicht mehr entsprechen und die vorgesehene Funktion nicht erfüllen können.

Kategorien posttranslationaler Modifikation

Zellen besitzen eine Vielzahl von Möglichkeiten, ihre Proteine zu bearbeiten und zu verändern. Dazu besitzen sie eine Vielzahl von Enzymen, die eigens für die Proteinmodifikation von der Zelle gebildet werden. Proteinmodifikationsprozesse können konstitutiv ablaufen oder aber durch Umwelteinflüsse oder andere Parameter beeinflusst werden. Folgende Vorgänge, die zu neuen Proteinspezies führen, wurden analysiert:

Abspaltungen

  • Abspaltung des N-terminalen Formylrestes durch die Deformylase. Jedes neu synthetisierte Protein (in Prokaryoten) enthält anfangs ein N-terminales Formylmethionin (Methionin bei Eukaryoten), welches bei der Translation immer zuerst eingebaut wird und dessen Formylrest im Folgenden durch die Deformylase abgespalten wird. Ein noch vorhandener Formylrest zeigt die gerade erst beendete Synthese des Proteinmoleküls an;
  • die Abspaltung des Methionylrests am N-Terminus neusynthetisierter Proteine durch die Methionylaminopeptidase. Bei Bakterien konnte man beobachten, dass die Größe der folgenden Aminosäure das Abspaltungsverhalten des N-terminalen Methionins beeinflusst. Je größer die zweite Aminosäure ist, desto unwahrscheinlicher wird eine Abspaltung des Startmethionins;
  • die gezielte Abspaltung von Signalsequenzen (etwa Protokollagen zu Kollagen);
  • das selektive Herausschneiden von Teilsequenzen (etwa Proinsulin zu Insulin, generell Präkursor-Proteine);
  • Proteininaktivierung und –fragmentierung durch Proteolyse, an der Proteasen beteiligt sind;

Anorganische Gruppen

Organische Gruppen

Organische Lipidgruppen

Diese Lipid-Modifikationen bewirken eine Adsorption an die Zellmembran.

Hinzufügen von Bindungen

  • das Knüpfen von Disulfidbrücken zwischen benachbarten Cystein-Resten zum Cystin (etwa Insulin);
  • die Veränderung der Faltung durch Chaperone;
  • die Bildung von Proteinkomplexen aus Untereinheiten (etwa Hämoglobin);
  • die Bildung von festen Strukturen über kovalente Quervernetzungen (etwa Kollagen-Fibrillen);
  • Knüpfung einer Isopeptidbindung, bspw bei der Blutgerinnung
  • Bildung einer Thioester-Bindung zwischen Cys und Asn/Gln (u.a. Komplementkomponente C3)
  • Bildung einer Thioether-Bindung zwischen Cys und Ser/Thr (Amatoxine und weitere)

Bindung an größere Moleküle

Veränderung einzelner Aminosäuren

  • L-/D-Isomerisierung: die Veränderung einer L-Aminosäure zur D-Aminosäure, bisher nachgewiesen in mehreren Tiergruppen (ausschließlich Gifte der Amphibien, Arthropoden, Mollusken und des Schnabeltiers)
  • Vitamin K-abhängige Carboxylierung eines Glutamat-Rests zu 1-Carboxyglutamat (Koagulation und calcifizierte Gewebe)
  • Umwandlung eines Lysin zu Hypusin (N-ε-(4-aminobutyl)lysin). Einziges bekanntes Protein: eIF-5A
  • Oxidation von einzelnen Aminosäureresten (Crystalline)
  • Ringschluss von Glutaminsäure zur Pyroglutaminsäure

Diverses

  • Bildung eines stabilen Radikals (Bakterien)
  • die Bindung (Komplexierung) von Ionen und niedermolekularen Substanzen;

Weblinks

Die News der letzten Tage

28.03.2023
Klimawandel | Ökologie
Frost im Frühling: Wie Bäume damit zurechtkommen
Durch den Klimawandel treiben viele Laubbäume früher aus, doch das Risiko von Spätfrösten im Frühjahr bleibt hoch und extreme Trockenphasen werden häufiger.
28.03.2023
Klimawandel | Primatologie
Klimawandel bedroht Lemuren auf Madagaskar
Mausmaki: Auch vermeintlich anpassungsfähige Säugetierarten haben ein erhöhtes Aussterberisiko.
23.03.2023
Genetik | Physiologie
Gene für Augenfarbe wichtig für eine gesunde Netzhaut
Forscher untersuchten, wie vier Gene der Fruchtfliege Drosophila, die für die Farbgebung der Augen verantwortlich sind, auch für die Gesundheit des Netzhautgewebes essentiell sind.
23.03.2023
Genetik | Physiologie
An der „Auferstehung“ sind viele Gene beteiligt
Manche Pflanzen können Monate ohne Wasser überleben, um dann nach einem kurzen Regenguss wieder zu ergrünen.
22.03.2023
Physiologie
Startschuß zur optischen Wahrnehmung
Forschende haben den molekularen Vorgang entschlüsselt, der als Allererstes im Auge abläuft, wenn Licht auf die Netzhaut trifft.
22.03.2023
Neurobiologie
Wettbewerb zwischen den Gehirnhälften im Schlaf
Der Mensch ist beidseitig symmetrisch: unser Gehirn besteht aus zwei Hälften, den so genannten Hemisphären.
22.03.2023
Neurobiologie | Physiologie
Warum wir von Schokoriegeln und Co. nicht die Finger lassen können
Schokoriegel, Chips und Pommes - warum können wir sie im Supermarkt nicht einfach links liegen lassen?
22.03.2023
Biochemie | Genetik | Zytologie
Aus Perspektive eines Ingenieurs ist Biologie chaotisch und unvollkommen
Der Vorteil von Redundanz in biologischen Systemen.
21.03.2023
Paläontologie
Neue Augen bei Trilobiten entdeckt
Wissenschaftler*innen der Universitäten Köln und Edinburgh entdecken bisher übersehene Augen bei Trilobiten.
21.03.2023
Bionik, Biotechnologie und Biophysik | Bioinformatik
Molekularbiologie trifft auf Quantenphysik
Biologische Systeme sind hochkomplex: Sie werden vor allem über genregulatorische Netzwerke gesteuert, in denen Gene, Proteine und RNA auf vielfältige Art interagieren.
21.03.2023
Astrobiologie | Bionik, Biotechnologie und Biophysik
Leben auf fernen Monden
Flüssiges Wasser gehört zu den wichtigsten Bedingungen für die Entstehung von Leben, wie wir es auf der Erde kennen.
21.03.2023
Biodiversität | Ökologie
Die Fichte stirbt und andere Bäume leiden
Ergebnisse der Waldzustandserhebung 2022 zeigen: Kronenverlichtungen für alle Baumarten weiterhin hoch.
21.03.2023
Genetik | Klimawandel | Physiologie | Zytologie
Modell Arabidopsis thaliana: Ein neuer Signalweg bei niedrigem Sauerstoffgehalt
Der Klimawandel führt zu einem vermehrten Auftreten von Wetterextremen: Im Fokus stehen bisher vor allem lange Dürre- und Hitzeperioden.
21.03.2023
Biodiversität | Taxonomie
Neue Arten der Riesenkrabbenspinnen beschrieben
Ein Forschungsteam aus Deutschland und aus China hat 99 neue Arten aus der Familie der Riesenkrabbenspinnen in Süd-, Ost- und Südostasien beschrieben.
20.03.2023
Biodiversität | Neobiota
Weitverbreitete Arten auf dem Vormarsch
Das menschliche Verhalten treibt den Wandel der Biodiversität und Veränderungen in der Zusammensetzung der Arten rapide voran.