Denaturierung (Biochemie)


Spiegelei - Das Protein (Eiweiß) erfährt durch Zuführung von Energie in Form von Temperaturerhöhung (Braten) eine Denaturierung (Gerinnung).

Denaturierung bezeichnet eine strukturelle Veränderung von Biomolekülen, wie zum Beispiel bei Proteinen (Eiweiße) oder der Desoxyribonukleinsäure (DNS), die in den meisten Fällen mit einem Verlust der biologischen Funktion dieser Moleküle verbunden ist. Eine Denaturierung kann entweder auf physikalische oder auf chemische Einflüsse zurückzuführen sein. Bei der Denaturierung bleibt die ursprüngliche Primärstruktur unverändert.

Prinzip der Denaturierung

Die durch äußere Einflüsse hervorgerufene Veränderung der Proteinstruktur, insbesondere der Sekundär- und Tertiärstruktur eines Proteins (und damit eventuell auch seiner Quartärstruktur) erfolgt, ohne dass sich die Reihenfolge der Aminosäuren (Primärstruktur) ändert. Das Protein verliert dabei seine ursprüngliche Entstehungsform, welche auch als native Konfiguration und Konformation bezeichnet wird. Der Vorgang kann reversibel (umkehrbar) oder irreversibel (unumkehrbar) sein. Die Umkehr der Denaturierung wird auch Renaturierung genannt.[1] Reversible Veränderungen der Molekülstruktur liegen beispielsweise bei der Hitzedenaturierung von DNA vor, wenn diese bei einer Polymerase-Kettenreaktion (PCR) erhitzt und wieder abgekühlt wird. Bei der irreversiblen Veränderung der Molekülstruktur kann der ursprüngliche räumliche Aufbau des Moleküls nicht wiederhergestellt werden. Dies passiert zum Beispiel beim Kochen des Frühstückeis, welches nicht wieder weicher gekocht werden kann, wenn es erst einmal ein „hartes Ei“ geworden ist. Die Denaturierung von Proteinen führt in der Regel dazu, dass das Molekül inaktiviert wird, das heißt, dass das Molekül seine biologische Funktion nicht mehr oder nur in geringerem Maße ausführen kann.

Allen Denaturierungsvorgängen ist gemeinsam, dass kovalente Bindungen (außer den Disulfid-Brücken in Proteinen) nicht gespalten werden. Die Kettenstruktur und damit die Abfolge der Bausteine (Primärstruktur) bleibt also erhalten. Durch Energiezufuhr werden aber die einzelnen Bausteine, d.h. Nukleotide und Aminosäuren, oder auch die ganze Molekülkette, so sehr ins Schwingen gebracht, dass Bindungen und wirkende Kräfte (ionische, polare und van-der-Waals-Wechselwirkungen, Wasserstoffbrückenbindungen, hydrophobe Effekte) zwischen verschiedenen Bereichen der Molekülkette gespalten bzw. aufgehoben werden. Disulfidbrücken werden meistens durch Reduktion mit Sulfhydrylen gespalten.

Denaturierung durch physikalische Einflüsse

Die häufigsten Denaturierungen unter physikalischem Einfluss sind die Hitzedenaturierung und die Strahlungsdenaturierung. Physikalisch kann Denaturierung daneben auch durch starkes Rühren, Schütteln, durch Ultraschalleinwirkung und durch Grenzflächenabsorption hervorgerufen werden.[2]

Hitzedenaturierung

Die Wärme- oder Hitzedenaturierung ist eine Art der Denaturierung, bei der eine Veränderung der Molekülstruktur durch eine Erhöhung der Temperatur herbeigeführt wird. Dabei werden durch die Hitzeeinwirkung meist keine kovalenten chemischen Bindungen gebrochen oder gebildet, die Primärstuktur bleibt also unverändert. Stattdessen werden Wasserstoffbrückenbindungen gebrochen oder neu gebildet, das sind in der Regel Bindungen zwischen Kettenabschnitten, wodurch häufig eine Veränderung der (Sekundärstruktur und) Tertiärstruktur bei Enzymen und anderen funktionellen Proteinen eintritt. Dies kann oft einen Verlust der biologischen Aktivität sowie eine Abnahme der Löslichkeit zur Folge haben. Letzteres macht sich dann als „Ausflocken“ oder „Gerinnung“ bemerkbar. Eine Hitzedenaturierung kann (wie andere Denaturierungen) reversibel (umkehrbar) sein, wenn die strukturellen Veränderungen noch nicht zu tiefgreifend sind, häufig ist sie aber irreversibel (unumkehrbar). Die Temperatur, bei der die Denaturierung der Proteine beginnt, ist je nach Aufbau und Organismus recht unterschiedlich. Die Enzyme hyper-thermophiler Archaeen müssen Temperaturen weit über 80 °C aushalten.

Beim Menschen können beispielsweise Proteine bei sehr hohem Fieber über 40 °C denaturieren. Solange das Fieber nicht allzu lange anhält, ist dieser Vorgang reversibel, bei Fieber über 42 °C jedoch irreversibel. Nach etwa sechs Stunden kann es allerdings Probleme bei der Wiederherstellung der nativen Struktur der Proteine geben, auch wenn 42 °C nicht erreicht wurden. Wenn die Enzyme aus dem Grundstoffwechsel nicht mehr „arbeiten“, ist die Versorgung des Körpers mit Energie nicht mehr in geeignetem Maße möglich (zum Beispiel, wenn Enzyme der Atmungskette nicht mehr funktionieren und die Zellen nicht mehr mit der lebenswichtigen Energie versorgt werden). Der Tod tritt ein. Bestimmte Moleküle wie Chaperone und Hitzeschockproteine helfen bei der Erhaltung und der Wiederherstellung der Struktur der Proteine.

Durch Autoklavieren werden Krankheitserreger auf Gegenständen mittels Denaturieren lebenswichtiger Biopolymere inaktiviert. Beim Autoklavieren muss eine Temperatur deutlich über 100 °C bei erhöhtem Druck über eine vorgegebene Zeit eingehalten werden, um sicher zu sterilisieren.

Nukleinsäuren denaturieren innerhalb eines recht engen Temperaturintervalls, auch „Schmelzpunkt“ genannt, der meist oberhalb von 80 °C liegt. Die Denaturierung ist reversibel. Durch ein Abkühlen der Nukleinsäuren lagern sich die Einzelstränge wieder zusammen. Diesen Vorgang macht man sich in der Molekularbiologie bei der Durchführung von PCR zunutze, um bestimmte Gene aus einem Organismus in vitro zu vervielfältigen: extrahierte DNA wird bei hohen Temperaturen in einem Reaktionsgefäß geschmolzen (Denaturierung). Anschließend wird die Temperatur wieder bis zu einer bestimmten Temperatur abgesenkt. Diese Annealing-Temperatur hängt von den Primern ab und liegt normalerweise 2–3 °C unter ihrem Schmelzpunkt (50 bis 65 °C). Die in der Lösung enthaltenen Primertemplates lagern sich an die DNA-Einzelstränge an (Annealing oder auch Primerhybridisierung genannt). Nun werden mit Hilfe einer Taq-Polymerase die Stränge wieder vervollständigt (Elongation). Der Zyklus von Denaturierung, Annealing und Elongation beginnt von vorn. Es werden etwa 25 bis 50 Zyklen durchgeführt. Man macht sich also die reversible Denaturierung der DNA bis zu 50 Mal zunutze, um ein gesuchtes Gen eines Organismus zu vervielfältigen.

Denaturierung durch energiereiche Strahlung

Wie die Übertragung von Energie mittels Infrarotlicht kann auch jede andere Energieübertragung, zum Beispiel durch UV-Licht, Mikrowellen oder andere Strahlung, denaturierend wirken. Allerdings können energiereiche Strahlen wie UV-Licht, Gamma- und Röntgenstrahlen insbesondere auch mit kovalenten Bindungen besonders von Nukleinsäuren interagieren und zu Kettenbrüchen (Depolymerisationen) führen. Umgekehrt kann energiereiche Strahlung auch zusätzliche kovalente Bindungen (zum Beispiel Dimerisierung in Nukleinsäuren) bewirken.

Denaturierung durch chemische Einflüsse

Ursachen der Proteindenaturierung können zum Beispiel chemische Substanzen wie Säuren, Basen, Salze, Detergentien (z.  B. 1 %-ige Lösung von Natriumlaurylsulfat-Lösung), Harnstoff oder Guanidiniumsalze sein.[3] Proteinstrukturen können auch durch Schwermetalle zerstört werden, da die Ionen Komplexstrukturen mit den Aminosäureresten bilden und so die biologisch aktive Struktur des Proteins verändern.

Säure- und Lauge-Denaturierung

Die Säuredenaturierung führt zu Ladungsverschiebungen zwischen den Molekülen und letzten Endes zum gleichen Ergebnis wie die Hitzedenaturierung, einer Umfaltung des Proteins in den unter den jeweiligen Bedingungen energetisch günstigsten Zustand. Die Säure gibt Protonen (H+) ab und verursacht damit die Ladungsänderung in der Proteinstruktur, sodass die Wasserstoffbrückenbindungen teilweise zerstört werden und die gleichen Ladungen sich gegenseitig abstoßen. Zusätzlich gibt die Säure Protonen (H+) an die Carboxylatgruppe (COO) ab, sodass eine Carboxygruppe –COOH entsteht und die vorherige negative Ladung verschwindet. Dies führt dazu, dass keine ionischen Wechselwirkungen zwischen der Carboxygruppe und den positiven Ladungen im Protein mehr möglich sind.

Entsprechendes können Laugen bewirken, auch sie ändern die Zusammensetzung der Ionen über den pH-Wert, jedoch werden Aminogruppen von Lysin oder Arginin deprotoniert, wodurch weniger positive Ladungen im Protein vorkommen, die mit negativ geladenen Gruppen wechselwirken könnten. Zusätzlich werden Carbonsäuregruppen zu Carboxylaten deprotoniert, wodurch Wasserstoffbrückenbindungen zerstört werden können und mehr negative Ladungen im Protein auftreten, die sich gegenseitig abstoßen.

Bei der Säure- oder Laugendenaturierung kann gleichzeitig eine Hydrolyse des Proteins auftreten.

Denaturierung durch Salze

Auch Salze haben einen Einfluss auf hydrophobe Effekte und können daher eine Denaturierung hervorrufen, wobei je nach Salz, der Einfluss auch in Richtung Renaturierung gehen kann. Man spricht dann, bezüglich der Ausfällung, auch von "Einsalzen" und "Aussalzen". Der relative Einfluss der die Salze bildenden Anionen und Kationen wird durch die "Hofmeister-Reihe" beschrieben.

Denaturierung durch Ethanol

Entsprechend der Säuredenaturierung kann Ethanol oder andere wasserlösliche, organische Lösungsmittel die in Biopolymeren zur Aufrechterhaltung der Struktur erforderlichen Wasserstoffbrücken und hydrophoben Wechselwirkungen stören, indem es als polares organisches Lösungsmittel interferiert. 50 bis 70%-iges Ethanol denaturiert die meisten Proteine und Nukleinsäuren. Da durch das Herauslösen der Membranlipide und die Zerstörung der Raumstruktur die Membranproteine ihre Funktion verlieren und die betreffenden Zellen seifenblasenartig platzen, kann so mit höherprozentigen Alkoholen (z. B. Ethanol, Isopropanol) desinfiziert werden: Bakterien- und Pilzzellen werden über die Denaturierung ihrer Membranproteine irreversibel inaktiviert, entsprechend werden behüllte Viren ihrer Lipidhülle beraubt, in der die Andockproteine sitzen.

Denaturierung durch reines Wasser

Proteine liegen in ihrer natürlichen Umgebung in Gegenwart von anderen Proteinen, gelösten Salzen, Cofaktoren oder Metaboliten vor, die auf mehr oder weniger komplexe Weise die natürliche Proteinstruktur stabilisieren. Entfernt man Salze und andere kleinere Moleküle durch Dialyse einer Proteinlösung gegen bidestilliertes Wasser – vorzugsweise in der Kälte –, kann man oft selektive (und reversible) Denaturierung vor allem von großen Proteinen erreichen, die unter diesen Bedingungen ausgefällt werden (präzipitieren).

Denaturierung durch Vernetzung

Auch durch die Verwendung von Fixierungsslösungen und chemischen Vernetzern (z. B. Formaldehyd, Paraformaldehyd oder Glutaraldehyd) wird gelegentlich das katalytische Zentrum oder eine Bindungsstelle eines Proteins so verändert, dass manche Funktionen nicht mehr erfüllt werden. Das Protein wird hierbei nicht (wie bei der chaotropen oder pH-abhängigen Denaturierung) entfaltet, es kann dabei jedoch in einer nicht-nativen Konformation fixiert werden und Funktionen verlieren. Bleiben notwendige Funktionen des Proteins von der Fixierung unberührt, so können darüber auch andere Eigenschaften verändert werden (siehe Vernetzung (Chemie)). Im Zuge einer Antigendemaskierung wird versucht, die Effekte der Fixierung rückgängig zu machen.

Renaturierung

Nach der Denaturierung eines Proteins ( z. B. eines Enzyms) während der Aufreinigung aus einem Proteingemisch ist zur Messung der biologischen Aktivität eine Rückkehr des Proteins in die native Form notwendig. Dies geht jedoch nur bei Proteinen, deren native Konformation zugleich den energetisch günstigsten Zustand unter isotonischen Bedingungen darstellt, nicht aber bei metastabilen Proteinen. Eine Renaturierung kann durch langsame Verdünnung des Denaturierungsmittels erreicht werden, begleitet von einer Wiederherstellung der Cofaktoren und der isotonischen Umgebung. Eine Rekonstitution kann im Anschluss erfolgen.

Abgrenzung zu anderen Veränderungen

Nicht als Denaturierung bezeichnet werden die durch Eiweiße vermittelten Strukturänderungen:

  1. durch Enzyme synthetisierte, umgewandelte oder abgebaute Moleküle, Aktivierungs- und Deaktivierungsreaktionen
  2. Konformationsänderungen durch Chaperone oder Prionen.

Bei sehr hoher Temperatur kann es auch zur Spaltung kovalenter Bindungen und damit zu Kettenbrüchen (Depolymerisation) kommen. Solche Änderungen der Primärstruktur werden nicht zu den Denaturierungen gezählt. Ebenso können Säuren wie Laugen bei hohen Konzentrationen und Reaktionstemperaturen zur Spaltung kovalenter Bindungen führen. Durch Hydrolyse ändert sich dann die Primärstruktur. Solche Veränderungen der Primärstruktur sind gewöhnliche chemische Reaktionen und werden nicht zu den Denaturierungen gerechnet.

Ein Grenzfall ist die Spaltung von Disulfidbrücken zwischen zwei Proteinsträngen. Dabei wird zwar eine kovalente chemische Bindung gelöst, die Aminosäuresequenz in jedem einzelnen Strang bleibt jedoch erhalten, deshalb zählt eine solche reduktive Spaltung von Disulfidbrücken, welche prinzipiell reversibel ist, zu den Denaturierungen.[4]

Literatur

  • Friedrich Lottspeich, Haralabos Zorbas: Bioanalytik. Spektrum Akademischer Verlag, Heidelberg 1998, ISBN 978-3827400413.
  • Hubert Rehm, Thomas Letzel: Der Experimentator: Proteinbiochemie / Proteomics. 6. Auflage, Spektrum Akademischer Verlag, Heidelberg 2009, ISBN 978-3827423122.

Weblinks

Einzelnachweise

  1. Hans-Dieter Jakubke, Hans Jeschkeit: Aminosäuren, Peptide, Proteine, Verlag Chemie, Weinheim, 402, 1982, ISBN 3-527-25892-2.
  2. Hans-Dieter Jakubke, Hans Jeschkeit: Aminosäuren, Peptide, Proteine, Verlag Chemie, Weinheim, 403, 1982, ISBN 3-527-25892-2.
  3. Hans-Dieter Jakubke, Hans Jeschkeit: Aminosäuren, Peptide, Proteine, Verlag Chemie, Weinheim, 403-404, 1982, ISBN 3-527-25892-2.
  4. Brockhaus ABC Chemie, VEB F. A. Brockhaus Verlag Leipzig 1965, S. 274.