Aromatase


Aromatase

Aromatase

Bändermodell nach PDB 1TQA (theoret.)
Vorhandene Strukturdaten: 3EQM
Eigenschaften des menschlichen Proteins
Masse/Länge Primärstruktur 502 Aminosäuren
Sekundär- bis Quartärstruktur Membranprotein (ER)
Bezeichner
Gen-Name CYP19A1
Externe IDs OMIM: 107910 UniProtP11511
Enzymklassifikation
EC, Kategorie 1.14.14.1  Oxidoreduktase
Reaktionsart Hydroxylierung, Dehydrierung, Deformylierung
Substrat Androstendion/Testosteron + 3NADPH/H+ + 3O2
Produkte Estron/Estradiol + 3NADP+ + 4H2O + Formiat
Vorkommen
Übergeordnetes Taxon Wirbeltiere[1]

Die Aromatase (CYP19A1) ist das Enzym, das in Wirbeltieren die Umsetzung von Testosteron zu Estradiol und von Androstendion zu Estron (Aromatisierung) katalysiert. Dies ist der letzte Reaktionsschritt bei der Biosynthese der Estrogene. CYP19A1 ist in der Membran des endoplasmatischen Retikulums lokalisiert und wird im Gehirn, der Plazenta und den Gonaden produziert. Mutationen im CYP19A1-Gen können zu erblichem Aromatasemangel oder -überschuss führen.[2]

Katalysierte Reaktionen

Androstendion19-OH-Androstendion19-Oxo-AndrostendionEstron

Androstendion wird in drei Schritten zu Estron aromatisiert.

Testosteron ⇒⇒⇒ Estradiol

Testosteron wird in drei Schritten zu Estradiol umgesetzt.

Die Geschichte der Aromatase[3]

Die Aromatase ist das zentrale Enzym der Biosynthese von Estrogenen, den sogenannten weiblichen Geschlechtshormonen. Die Analyse der Biochemie und der Funktion dieses Enzyms war mit der Suche nach Hemmstoffen der Aromatase-Funktion verbunden, als man in den 1970er Jahren festgestellt hatte, dass Estradiol ein Wachstumsfaktor von Brustkrebszellen ist, der von den Krebszellen und dem Drüsengewebe selbst gebildet wird. Schon in den 1930er Jahren wurde bekannt, dass sich Androgene (C19-Steroide) in Estrogene (C18-Steroide) umwandeln lassen. Bei der Aromatisierung des A-Ringes wird, wie sich immer wieder bestätigt hat, der C19-Substituent in der 10-Position als Formiat abgespalten. Quelle der Aromatase-Aktivität in diesen frühen Jahren waren Gewebsextrakte von Schweine-Nebennieren.

Bevor das Enzym selbst charakterisiert werden konnte, wurden Zwischenstufen der Aromatisierung, 19-Hydroxy-Androstendion und 19-Oxo-Androstendion identifiziert. Die stufenweise Aufnahme dreier Sauerstoff-Moleküle durch die Aromase-Monooxygenase unter Zuhilfenahme der NADPH-Cytochrom-P450-Oxidoreduktase und dreier Moleküle NADPH/H+ wurde damit erklärt.

In den 1970 Jahren wurde dann festgestellt, dass Aromatase auch außerhalb von Gonaden und Nebenniere exprimiert wird: in der Brustdrüse und Brustkrebszellen sowie im Fettwebe. Die Estrogen-Neubildung konnte durch ex-vivo-Versuche mit radioaktiv-markiertem Androstendion bewiesen werden. Die Alternative für die Anwesenheit von Estron und Estradiol in der weiblichen Brust ist eine Abspaltung von Sulfat aus Estron-Sulfat durch eine im Gewebe exprimierte Sulfatase. Mit radioaktiv-markiertem Estron-Sulfat ließ sich in Brusttumoren von Nagern zeigen, dass zwar etwa 20 bis 50 % des Estrons in der weiblichen Brust durch die Wirkung der Sulfatase auf das im Blut zirkulierende Estron-Sulfat entstanden waren; die übrigen 80 - 50 % mussten daher durch Androstendion-Umwandlung entstanden sein.

Die Entwicklung von Androstendion mit radioaktivem Tritium am C19-Kohlenstoff half, die Aktivität der Aromatase als Verlust der Radioaktivität durch die Oxidationsreaktionen nachzuweisen.

Damit war dann in den 1980 Jahren die Isolierung des menschlichen Aromatase-Proteins aus Plazenta-Mikrosomen möglich. Am isolierten Protein wurde dann die Umwandlung von Androstendion in Estron nachgewiesen. Dies war der Beweis dafür, dass die dreistufige Reaktion durch ein einzelnes Protein bewirkt wurde. Mit Hilfe von PCR und molekularbiologischer Klonierung und Sequenzierung wurde aus einer Expressionslibrary schließlich die Aromatase-Sequenz erhalten. Das Gen wurde anschließend auf Chromosom 15 Genort q21.2 lokalisiert.

Aromatase-Evolution

Die Bildung von Estrogenen aus Androgenen mit Hilfe der Aromatase galt lange als charakterisches Merkmal von Wirbeltieren. Befunde in Muscheln, in denen Estrogene identifiziert wurden, und die Sequenzierung von Aromatase-ähnlichen Genen in weiteren Nicht-Wirbeltieren haben den Vertebraten-Ursprung der Aromatase anzweifeln lassen. Bis heute allerdings sind keine wirklichen Aromatasen in Non-Vertebraten genetisch und funktionell charakterisiert. Tiwary und Li[4] haben zwar im Jahre 2009 eine parallele Evolution von Androgenrezeptor und Aromatase postuliert, die verwendeten Invertebraten-Sequenzen werden aber von Reitzel und Tarrant[5] als ungeeignet für die Analyse abgelehnt.

Es sollte auch bedacht werden, dass Estrogene vom Cholesterin ausgehend über Pregnenolon, Progesteron, Testosteron gebildet werden. Schon die Umwandlung von Cholesterin zu Pregnenolon durch das dabei notwendige seitenkettenspaltende Enzym CYP11A1 ist vertebratenspezifisch. Die Bildung von Estrogenen aus Cholesterin benötigt also insgesamt fünf Enzyme. Diese fünf Enzyme sind bei Fischen und danach allen anderen Wirbeltieren vorhanden und funktionell. Für Nicht-Wirbeltiere ist die Beweiskette dagegen äußerst lückenhaft. Mal gibt es eine Enzymaktivität, aber weder Protein noch Gen; mal gibt es ein Gen, aber kein funktionelles Protein. Dabei liegt die Betonung auf ein und nicht fünf. Es bleibt daher abzuwarten, ob sich je ein Invertebraten-Ortholog für die Aromatase findet.

Struktur und Funktion der Aromatase

Die Aromatase ist wie die assoziierte NADPH-Cytochrom-P450-Oxidoreduktase (POR) ein membranassoziiertes Protein im endoplasmatischen Retikulum. POR bindet NADPH/H+ und aktiviert über die FAD- und FMN-Kofaktoren unmittelbar das aktive Zentrum der Aromatase, die dann den aktiven Sauerstoff für den Angriff am C19-Kohlenstoffatom von Androgenen zur Verfügung stellt.

Das Aromatase-Gen auf Chromosom 15 hat neun kodierende Exone (2 bis 10) und mehrere Varianten für das nichttranslatierte Exon 1. Unter dem Einfluss gewebsspezifischer Transkriptionsfaktoren wird die Aromatase-RNA-Transkription an unterschiedlichen Stellen initiiert. Die nachfolgende Aufstellung fasst den Aromatase-Genpromotor zusammen und beschreibt die Reihenfolge der verschiedenen Startstellen in der Reihenfolge von am weitesten vom kodierenden Exon 2 entfernt bis dem Exon 2 am nächsten; die Zahlen in Klammern geben den Abstand (in Kilobasen) zum nächsten Startpunkt an:

  • Plazenta (major) 1.1 (15 kb)
  • Plazenta (minor 2) 2a (5 kb)
  • Haut/Fettgewebe 1.4 (30 kb)
  • Fötalgewebe 1.5 (7 kb)
  • Endothelzellen/Brustkarzinom 1.7 (3 kb)
  • Gehirn 1.f (20 kb)
  • Plazenta (minor 1) 1.2 (12 kb)
  • Knochen 1.6 (0,5 kb)
  • Fettgewebe/Brustkrebs 1.3 (0,2 kb)
  • Ovar/Hoden/Brustkrebs/Endometriose PII (0kb)

Insgesamt umspannt das Gen etwa 120 Kb (Kilobasenpaare). Diese Aufstellung zeigt auch, in welchen menschlichen Geweben die Aromatase exprimiert wird.

Funktion der Aromatase in den verschiedenen Geweben

In den Ovarien

In vielen Wirbeltieren, von Fischen über Vögel bis hin zu Säugern, ist die Aromatase ein spezielles Protein der Gonaden (und des Gehirns). Menschliche Granulosazellen in prä-ovulatorischen (sprungbereiten) Follikeln exprimieren die Aromatase wesentlich stärker als die Zellen kleinerer Follikel. Beim Menschen und in Nagern wurde Aromatase auch im Gelbkörper gefunden. In den Hoden findet sich die Aromatase vor der Pubertät in Sertoli-Zellen und später bei erwachsenen Männern in Leydig-Zellen. Auch in verschiedenen Spermien-Reifungsstadien von Nagern wurde Aromatase identifiziert.[6]

Das präovulatorische Estrodiol ist das Wachstumshormon für die Uterus-Schleimhaut, das Endometrium. Unter dem E2-Einfluss bereitet sich diese darauf vor, das befruchtete Ei aufzunehmen. Wenn nach dem Eisprung und ohne die Progesteron-Bildung aus dem Trophoblast auch der Gelbkörper die E2-Bildung einstellt, verkümmert das Endometrium und wird bei der Monatsblutung abgestoßen.

Lektionen aus Patienten bzw. Aromatase-Genknock-out-Mäusen bzw. -überexprimierenden Mäusen

Patientinnen mit Aromatase-Defekten haben bei der Geburt keine eindeutig männlichen oder weiblichen Gonaden, entwickeln in der Pubertät eine Amenorrhö, fehlende Entwicklung einer weiblichen Brust, einen hypergonadotrophen Hypogonadismus und zystische Ovarien. Da mit Estradiol-Gabe die Symptom begrenzt werden können, fehlen Langzeituntersuchungen zu diesem Krankheitsbild.

Betroffenen Männer (bis 2006 sieben bekannte Fälle) fehlt jegliches Estradiol, sie besitzen aber normale Mengen an Testosteron und Gonadotropinen. Damit einher geht ein abnorm großes Wachstum mit verzögerter Knochenreifung und Epiphysenschließung. Außerdem kommt es zu Osteoporose mit Knochenschmerz und genu valgum. Auch erhöhtes Insulin, gestörter Lipidstoffwechsel oder fehlende Fruchtbarkeit wurden beschrieben.[7]

Mäuse mit ausgeschaltetem Aromatase-Gen (Genknock-out Mäuse) zeigten u. a. Gehirndefekte, Gedächtnisstörungen, Autoimmunität mit Lymphozyten-Vermehrung, Verkleinerung des Thymus mit geringerer Zelldichte, Insulin-Resistenz, mit dem Altern ansteigende Adipositas, erhöhte Cholesterol-, Blutlipoprotein- und Triglycerid-Werte, abnehmende Knochenlänge und -dichte, verringerte Aggression gegen männliche Störenfriede, aber verstärkte Aggressivität gegen paarungsbereite Weibchen.[7]

[8]

Aromatasehemmer

Aromatasehemmer können die Bildung von Estrogenen im Muskel- und Fettgewebe blockieren und werden daher bei der Behandlung von hormonempfindlichem Brustkrebs eingesetzt. Da die Estrogenproduktion in den Eierstöcken von Aromatasehemmern nicht unterbunden wird, sind diese nur für Frauen nach der Menopause oder nach operativer Entfernung oder medikamentöser Blockade der Eierstöcke geeignet. Therapeutisch genutzte Arzneistoffe sind Anastrozol, Letrozol und Exemestan. Aromatasehemmer werden bei Brustkrebserkrankungen eingesetzt, deren Entstehung und Verlauf häufig durch das weibliche Sexualhormon Östrogen beeinflußt wird. Speziell bei fortgeschrittenen Brustkrebserkrankungen von Frauen nach den Wechseljahren werden Aromastasehemmer dann eingesetzt, wenn der Krebs nicht oder nicht ausreichend auf eine Behandlung mit Antiöstrogenen (Tamoxifen) ansprach.

Auch Bodybuilder setzen - insbesondere bei künstlicher Testosteronzufuhr - Aromatasehemmer ein, um die durch den erhöhten Testosteronspiegel verstärkte Umsetzung in Estrogene zu unterbinden. Die World Anti-Doping Agency (WADA) listet Aromatasehemmer in der Kategorie S4 der verbotenen Dopingmittel auf; explizit aufgeführt werden Anastrozol, Letrozol, Aminogluthetimid, Exemestan, Formestan und Testolacton.[9]

Literatur

  • V. J. Assikis & A. Buzdar: Recent advances in aromatase inhibitor therapy for breast cancer. In: Seminars in Oncol. 29 (3 Suppl. 11), 2002, S. 120–128
  • Roselli CE, Liu M, Hurn PD: Brain aromatization: classic roles and new perspectives. In: Semin. Reprod. Med. 27. Jahrgang, Nr. 3, Mai 2009, S. 207–17, doi:10.1055/s-0029-1216274, PMID 19401952.

Weblinks

Wikibooks: Steroidhormon-Stoffwechsel – Lern- und Lehrmaterialien

Einzelnachweise

  1. Homologe bei OMA
  2. UniProt P11511
  3. Santen RJ, Brodie H, Simpson ER, Siiteri PK, Brodie A: History of aromatase: saga of an important biological mediator and therapeutic target. In: Endocr. Rev. 30. Jahrgang, Nr. 4, Juni 2009, S. 343–375, doi:10.1210/er.2008-0016, PMID 19389994.
  4. Basant Tiwary, Wen-Hsiung Li: Parallel evolution between aromatase and androgen receptor in the animal kingdom. In: Molecular Biology and Evolution. 26. Jahrgang, Nr. 1, Januar 2009, ISSN 1537-1719, S. 123–129, doi:10.1093/molbev/msn233, PMID 18936441.
  5. Adam M Reitzel, Ann M Tarrant: Correlated evolution of androgen receptor and aromatase revisited. In: Molecular Biology and Evolution. 21. Mai 2010, ISSN 1537-1719, doi:10.1093/molbev/msq129, PMID 20494939.
  6. Alan Conley1 and Margaret Hinshelwood: Mammalian aromatases. In: Reproduction. 121. Jahrgang, 2001, S. 685–695;, PMID 11427156.
  7. 7,0 7,1 Jones ME, Boon WC, Proietto J, Simpson ER.: Of mice and men: the evolving phenotype of aromatase deficiency. In: Trends Endocrinol Metab. 17. Jahrgang, Nr. (2), 2006, S. 55–64., PMID 16480891.
  8. Xiangdong Li, Nafis Rahman: Impact of androgen/estrogen ratio: Lessons learned from the aromatase over-expression mice. In: General and Comparative Endocrinology. 159. Jahrgang, 2008, S. 1–9, PMID 18762187.
  9. NADA: Die Verbotsliste 2009 – Internationaler Standard. S. 5 (PDF; 165 KB)
  10. Adams LS, Chen S: Phytochemicals for breast cancer prevention by targeting aromatase. In: Front. Biosci. 14. Jahrgang, 2009, S. 3846–63, PMID 19273315.