Mutation


FagPurpurLeavesJune04.jpg
Fagus sylvatica Lammas shoot 001.jpg
Die rötliche Blattfarbe der Blutbuche (oben) entstand durch eine Mutation bei einer Rotbuche (unten).

Eine Mutation (lat. mutare „ändern“) ist eine dauerhafte Veränderung des Erbgutes.[1] Der Fachbegriff wurde vom Botaniker Hugo de Vries 1901 geprägt.[2] Sie betrifft zunächst nur das Erbgut einer Zelle, wird aber von dieser an alle eventuell entstehenden Tochterzellen weitergegeben.[3] Bei mehrzelligen Lebewesen kann man unterscheiden zwischen Keimbahn-Mutationen, die an die Nachkommen weitergegeben werden können, und somatischen Mutationen, die in anderen Geweben stattfinden und daher nicht an die Nachkommen weitergegeben werden. Ein Organismus mit einer Mutation wird als Mutant oder Mutante bezeichnet.

Eine Mutation kann negative, positive oder auch keine (stille Mutation) Auswirkungen auf die Merkmale des Organismus (Phänotyp) haben. Mutationen können spontan auftreten oder durch äußere Einflüsse verursacht werden, wie beispielsweise Strahlung oder erbgutverändernde Chemikalien (Mutagene).[4][5]

In der klassischen Zytogenetik werden Mutationen nach ihrem Umfang eingeteilt: Genommutationen sind Veränderungen der Anzahl der Chromosomen, Chromosomenmutationen sind Veränderungen der Chromosomenstruktur, die bei Chromosomenpräparaten lichtmikroskopisch erkennbar sind, Genmutationen sind dagegen an solchen Präparaten mikroskopisch nicht erkennbar.[6][7]

Mutationen in Genen deren Genprodukte für die Aufrechterhaltung einer intakten DNA erforderlich sind, zum Beispiel Tumorsuppressorgene, können weitere Mutationen nach sich ziehen (Mutatorphänotyp).

Arten der Mutation

Unterscheidung nach Erblichkeit

Keimbahnmutationen
sind Mutationen, die an die Nachkommen über die Keimbahn weitergegeben werden; sie betreffen Eizellen oder Spermien sowie deren Vorläufer. Diese Mutationen sind wichtig für die Evolution, da sie von einer Generation zur nächsten übertragbar sind. Auf den Organismus, in dem sie stattfinden, haben Keimbahnmutationen in der Regel keine direkten Auswirkungen.
Somatische Mutationen
sind Mutationen, die somatische Zellen betreffen. Sie haben Auswirkungen auf den Organismus, in dem sie stattfinden, werden aber nicht an die Nachkommen vererbt. So können sich unter anderem normale Körperzellen in ungebremst wuchernde Krebszellen umwandeln. Auch bei dem Alterungsprozess eines Organismus spielen somatische Mutationen eine Rolle. Sie haben daher Bedeutung für die Medizin.

Unterscheidung nach Ursache

Spontanmutationen
sind Mutationen ohne äußere Ursache, wie der chemische Zerfall eines Nukleotids (Cytosin desaminiert oxidativ z.B. spontan zu Uracil) oder der Tunneleffekt (Protonen-Tunneln in DNA[8]).
Induzierte Mutationen
sind durch Mutagene (mutationsauslösende Stoffe oder Strahlen) erzeugte Mutationen.

Unterscheidung nach Mechanismus

Fehler bei der Replikation
DNA-Polymerasen haben unterschiedlich hohe Fehlerraten.
Unzureichende Proof-reading-Aktivität
Manche DNA-Polymerasen haben die Möglichkeit Fehleinbaue selbständig zu erkennen und zu korrigieren. Die DNA-Polymerase α der Eukaryoten besitzt jedoch z. B. keine proof-reading-Aktivität (proof-reading, dt. Korrekturlesen).
Fehler bei prä- und postreplikativen Reparaturmechanismen
Beim Einbau/Finden eines ungewöhnlichen Nukleotids, etwa von Uracil in der DNA, wird dieses entfernt, bei einer Fehlpaarung zwischen 2 DNA-typischen Nukleotiden muss sich das Reparaturenzym entscheiden mit 50-prozentiger Fehlerwahrscheinlichkeit.
Ungleichmäßiges Crossing-over
Fehlpaarungen bei der Meiose durch auf einem Strang naheliegende ähnliche oder identische Sequenzen, wie etwa Satelliten-DNA oder Transposons.
Non-Disjunction
führt zu fehlerhafter Verteilung von Chromosomen und somit zu Trisomien und Monosomien.
Integration oder Herausspringen von Transposons oder Retroviren
Diese Elemente können in Gene oder genregulatorische Bereiche integrieren.

Unterscheidung nach Größe und Ort der Veränderung

Die Sichelzellenanämie wird durch eine Mutation im Gen einer Hämoglobin-Untereinheit ausgelöst. Sie führt zu sichelförmigen roten Blutkörperchen, hier zusammen mit normalen Formen.
Genmutation
eine erbliche Änderung, die nur ein Gen betrifft. Beispiele sind Punkt- und Rastermutationen. Bei der Punktmutation wird lediglich eine organische Base im genetischen Code verändert (mutiert). Eine Frameshift-Mutation, eine Insertion (Einschub) oder Deletion (Entfernen) einer einzelnen Base, verändert jedoch aufgrund der Triplettkodierung im genetischen Code die gesamte Struktur eines Gens und hat deshalb meist weit größere Auswirkungen. Eine weitere mögliche Folge ist alternatives Splicing. Zu den Genmutationen zählen auch Deletionen von längeren Sequenzen sowie Genduplikationen, bei denen sich ein bestimmter Abschnitt eines Chromosoms verdoppelt oder vervielfacht.
Chromosomen- oder strukturelle Chromosomenaberrationen
vererbbare Änderung der Struktur einzelner Chromosomen. Der im Lichtmikroskop sichtbare Bau eines Chromosoms ist verändert. So können Chromosomenstücke verloren gehen oder Teile eines anderen Chromosoms eingebaut sein. Ein Beispiel ist das Katzenschrei-Syndrom, bei dem ein Abschnitt des Chromosoms 5 verloren gegangen ist. Dadurch fehlen zahlreiche Gene, die zu einer starken Veränderung und Schädigung im Phänotyp führen.
Genommutation oder numerische Chromosomenaberration
eine Änderung, bei der ganze Chromosomen oder gar Chromosomensätze vermehrt werden (Aneuploidie, Polyploidie) oder verloren gehen. Ein bekanntes Beispiel beim Menschen ist das Downsyndrom. Hier ist das Chromosom 21 dreifach vorhanden.

Unterscheidung nach Folgen für den Organismus

Letale Mutationen
sind Mutationen, die nach ihrem Auftreten einen Organismus unabhängig von seiner jeweiligen Lebensphase in jedem Falle töten.
Konditional-letale Mutationen
sind Mutationen, deren Veränderung des Genprodukts einen Organismus nur bei bestimmten Wachstumsbedingungen tötet.
Loss-of-function-Mutationen
Hierbei wird das Genprodukt durch eine Mutation im Gen funktionslos. Ist der Funktionsverlust vollständig, spricht man von Nullallel oder einem amorphen Allel. Bleibt ein Teil der Wildtypfunktion erhalten bezeichnet man es als hypomorphes Allel.
Loss-of-function-Mutationen sind meistens rezessiv, da ein anderes Allel den Funktionsverlust eines Gens auffangen kann.[9] [10]
Gain-of-Function-Mutationen
Hierbei gewinnt ein Gen an Aktivität und wird dann auch als hypermorph bezeichnet. Entsteht durch die Mutation ein komplett neuer Phänotyp, dann bezeichnet man das Allel auch als neomorph.
Eine Gain-of-function-Mutation, die einen sichtbaren Phänotyp hervorruft, wird als ‚dominant‘ bezeichnet. Wenn ein Gain-of-function-Allel einen Phänotyp ausschließlich im homozygoten Zustand zeigt, spricht man jedoch von einer rezessiven Gain-of-Function-Mutation. [11]
Neutrale Mutationen
können den Phänotyp verändern, haben aber keine Fitnesskonsequenzen.
Stille Mutationen
sind Mutationen, die keinerlei Folgen für den Organismus haben.

Folgen

Keine Folgen – neutrale Mutationen

Viele Mutationen führen zu Veränderungen in DNA-Abschnitten, die keine Konsequenzen für den Organismus nach sich ziehen. Dies ist der Fall, wenn die mutierte Stelle im Genom nicht für genetisch relevante Information benutzt wird (siehe Pseudogen, Nichtkodierende DNA). Auch wenn die veränderte Stelle benutzt wird, kann es sein, dass der Informationsgehalt des Gens sich nicht verändert hat, da eine Reihe von Aminosäuren identisch kodiert sind (siehe: genetischer Code). Daher werden diese Mutationen stille oder stumme Mutationen genannt. Selbst Mutationen, die die Aminosäurensequenz eines Proteins verändern, können neutral oder fast neutral sein, wenn sich hierdurch die Struktur des Proteins kaum ändert.

Neutrale Mutationen tragen dazu bei, dass innerhalb einer Gruppe von Organismen funktional gleiche Gene unterschiedliche genetische „Buchstaben“ innerhalb ihrer Nukleotid-Sequenz besitzen. Diese Unterschiede, die Polymorphismen heißen, lassen sich ausnutzen, um Verwandtschaftsbeziehungen zwischen Individuen abzuleiten, oder auch um eine durchschnittliche Mutationsrate abzuschätzen.

Zusätzlich kommt noch zum Tragen, dass nicht nur beim diploiden Chromosomensatz oft mehrere Gene die gleichen genetischen Eigenschaften codieren, sodass sich eine Mutation aus diesem Grunde nicht sofort bemerkbar machen muss.

Die Neutrale Theorie der molekularen Evolution besagt, dass die meisten genetischen Änderungen neutraler Art sind. Diese Hypothese ist umstritten und Gegenstand aktueller Forschung.

Negative Folgen

Besonders größere Veränderungen im Erbgut führen oft zu nachteiligen Veränderungen im Stoffwechsel oder auch zu Fehlbildungen und anderen Besonderheiten.

Es gibt verschiedene Erbkrankheiten, die entweder vererbt sind oder durch Mutation neu auftreten können. Beispiele dafür sind:

  • die Sichelzellenanämie, eine Blutkrankheit, bei der sich die äußere Form der roten Blutkörperchen ändert, was unter anderem verringerte Sauerstoffaufnahme zur Folge hat,
  • die Phenylketonurie, wobei der Abbau der Aminosäure Phenylalanin gestört ist, wodurch Schädigungen des kindlichen Gehirns hervorgerufen werden können,
  • der Albinismus und
  • die Mukoviszidose oder zystische Fibrose, die häufigste genetisch bedingte Krankheit Nordeuropas. Bei ihr ist das CFTR-Gen, das die Konsistenz der Drüsensekrete steuert, defekt. Wenn das Sekret zu zäh ist, kann es (je nach Drüse) die Atemwege oder die Ausführungsgänge der Drüsen verstopfen.
  • Außerdem Formen von Minderwuchs, bei denen die Arme und Beine ungewöhnlich kurz sind, während der Körper ansonsten wie üblich gebaut ist,
  • die Rot-Grün-Schwäche und
  • die Bluterkrankheit, bei der die Blutgerinnung praktisch nicht einsetzt.

Positive Folgen

Mutationen sind einer der Evolutionsfaktoren und damit für die Entwicklung des Lebens und der Artenvielfalt auf der Erde mitverantwortlich. Zwar sind Mutationen mit positiven Folgen seltener als negative oder neutrale Mutationen, wenn aber eine positive Mutation erfolgt ist, trägt der Mechanismus der Natürlichen Selektion dazu bei, dass diese sich in einer Population ausbreiten kann.

Der Mensch macht sich zudem den genomverändernden Effekt ionisierender Strahlen zunutze, um Mutationen künstlich auszulösen. Eine Anwendung besteht in der Bestrahlung von Blumen- und Pflanzensamen, um bisher unbekannte Formen zu erzeugen und wirtschaftlich zu nutzen. Das Verfahren hat meist aufgrund der breitgestreuten, zu umfangreichen und ungezielten Veränderung des Erbmaterials eine sehr geringe Erfolgsquote.

Beispiele

Eine Nacktmaus
  • Manx-Katzen sind durch Genmutation infolge extremer Inzucht entstanden. Neben der Schwanzlosigkeit bestehen Skelettmissbildungen und weitere Fehlbildungen. Manx-Katzen sind in diesem mutierten Gen M nie reinerbig, es liegt also bei ihnen die Kombination Mm vor, d. h. es besteht ein autosomal unvollkommen dominanter Erbgang mit variabler Expressivität (Ausprägung). Bei Tieren mit der reinerbigen Gen-Kombination MM sterben die Feten schon im Mutterleib.
  • Die Sphynx-Katze hat keinerlei Fell. Diese Rasse wird seit 1966 aus einer in Kanada geborenen, natürlich mutierten Katze vom Menschen weitergezüchtet. Bei der gegenwärtigen Gesetzgebung in allen Ländern führt der Wunsch nach immer neuen Rasseattraktionen dazu, dass man auch Tiere weiter züchtet, die unter natürlichen Bedingungen nicht lebensfähig wären.
  • Nacktmäuse, auch thymusaplastische Mäuse oder athymische Mäuse genannt, sind genetische Mutanten der Hausmaus mit fehlendem Thymus. Sie entstanden 1961 in Glasgow infolge einer Spontanmutation bei Albino-Mäusen und sind für die Forschung ein außerordentlich wichtiger Modellorganismus.
  • In der Pflanzenzucht ermöglichen Mutationen große Fortschritte. Aus Gräsern mit kleinen Samen wurden ertragreiche Getreidesorten gezüchtet. Ohne Pflanzenzucht und Mutationen wäre es nicht möglich, die Weltbevölkerung zu ernähren.
  • Laktose-Toleranz beim Menschen. Genetiker haben festgestellt, dass der Mensch ursprünglich im Erwachsenenalter laktose-intolerant wurde, d.h. alle Erwachsenen konnten milch- bzw. milchzuckerhaltige Nahrung nur noch schlecht oder gar nicht mehr verdauen, genetisch determiniert wie bei allen Säugetieren. Nach Ansicht der Forscher muss vor etwa 10.000 Jahren (nach anderen Quellen vor etwa 8.000 Jahren) bei einem Menschen im kaukasischen Raum eine Mutation aufgetreten sein, die die Laktosetoleranz des Kindes auf die gesamte Lebensspanne ausdehnte. Somit zeigen alle Nachkommen dieses Menschen zeit ihres Lebens keine gesundheitliche Beeinträchtigung beim Verzehr von Milch, wie sie andererseits noch heute unter anderem bei Asiaten oder Afrikanern auftritt, die damals von dieser Mutation nicht betroffen waren und es deshalb auch heute nicht sind (siehe Laktoseintoleranz).
  • Gehirnentwicklung des Menschen. Die Gene Microcephalin und ASPM steuern beim Menschen das Größenwachstum des Gehirns. Forscher um Bruce Lahn vom Howard Hughes Medical Institute der University of Chicago (USA) haben herausgefunden, dass zwei Mutationen sich in der jüngeren Stammesgeschichte des Menschen als vorteilhaft erwiesen haben. Die Haplogruppe D als Ergebnis einer Mutation des Microcephalins entstand vor 37.000 Jahren im menschlichen Genom und verbreitete sich etwa gleichzeitig mit den ältesten Funden, die von der Beschäftigung des Menschen mit Kunst, Musik und Religion zeugen. Diese Mutation findet man heute bei etwa 70 % aller Menschen. Bei einer anderen Mutation entstand vor etwa 5.800 Jahren die Haplogruppe D des ASPM, etwa zeitgleich mit der ersten Zivilisation in Mesopotamien, von der auch die ältesten Schriftfunde der Menschheitsgeschichte stammen. Diese zweite Mutation hat sich bis heute bei 30 % der Weltbevölkerung durchgesetzt. Zusätzlich gibt es auch regionale Unterschiede. So kommt die Haplogruppe D des ASPM-Gens besonders in Europa und den angrenzenden Gebieten Asiens und Afrikas vor. Die Parallelität der beschriebenen Ereignisse wird von den Wissenschaftlern dahingehend interpretiert, dass beide Mutationen einen evolutionären Vorteil bieten müssen. [12]
  • Erkrankungsrisiko bei Brustkrebs. Im Sommer 2006 haben Forscher um Naznee Rahman vom britischen Institut of cancer research in Surrey ein neues Brustkrebsgen mit der Bezeichnung BRIP-1 identifiziert. Dieses Gen kodiert ein Protein, welches an der Reparatur von DNA-Schäden beteiligt ist. Eine zugleich entdeckte, selten vorkommende Mutation dieses Gens bewirkt, dass das BRIP-1-Protein diese Schutzfunktion nicht mehr ausführen kann. Bei einem Vorliegen dieser Mutation haben Frauen ein doppelt so hohes Brustkrebsrisiko wie andere mit einer normalen Version dieser Erbanlage. Mutationen der schon länger bekannten Gene BRCA1 und BRCA2 erhöhen dagegen das Erkrankungsrisiko um den Faktor 10 bis 20. [13]

Gartenbau

Im Gartenbau wird eine Mutation, aus der eine neue Sorte entsteht, auch „Abart“ oder „Sport“ genannt.

Literatur

  • Wilfried Janning & Elisabeth Knust: Genetik: allgemeine Genetik, molekulare Genetik, Entwicklungsgenetik, Georg Thieme Verlag, Stuttgart / New York 2004, ISBN 3-13-128771-3
  • Raymond Devoret: Mutation., Encyclopedia of Life Sciences 2001, doi:10.1038/npg.els.0001882 (Volltextzugriff)
  • Dennis Drayna: Genspuren der Menschheitsgeschichte, Spektrum der Wissenschaft, Januar 2006, s. 30 ff. http://www.spektrum.de/artikel/836427

Einzelnachweise

  1. Herder Lexikon der Biologie, 2004: Mutation w [von latein. mutatio = Veränderung; Verb mutieren], spontane, d.h. natürlich verursachte, oder durch Mutagene induzierte Veränderung des Erbguts (Veränderung der Basensequenz), die sich möglicherweise phänotypisch (Phänotyp; z.B. in Form einer "Degeneration") manifestiert.
  2. Kegel, Bernhard: Epigenetik. Köln. ³2010. S. 35.
  3. Rolf Knippers (1997). Molekulare Genetik, Thieme, ISBN 3-13-477007-5: Mutationen sind vererbbare Veränderungen der genetischen Information.
  4. Seyffert W (2003). Genetik, 2. Auflage, Spektrum, ISBN 3827410223: Spontane oder induzierte Veränderungen des Erbgefüges werden als Mutationen bezeichnet.
  5. Pschyrembel Klinisches Wörterbuch online[1], aufgerufen am 30. Sep. 2009: Definition 1. (genet.): Veränderung des genet. Materials (DNA od. RNA), die ohne erkennbare äußere Ursache (Spontanmutation) od. durch exogene Einflüsse (induzierte M.) entstehen kann;...
  6. Werner Buselmaier, Gholamali Tariverdian: Humangenetik. Begleittext zum Gegenstandskatalog. Springer Verlag Berlin Heidelberg New York, 1991, ISBN 3-540-54095-4
  7. William Hovanitz: Textbook of Genetics. Elsevier Press, Inc., Houston, New York, 1953 (S. 190).„(...) if a change in structure (of chromosomes) is large enough to be visible in cytological preparations it is considered a chromosomal mutation. If it is too small to be readily observed, is known only from the genetic results of segregation and can be localized on a chromosome, it is known as a gene mutation. There is no sharp dividing line between gene mutations and chromosomal mutations. Eventually all gene mutations in their ultra-fine structure will be found to be structural, if only in the molecular arrangement of which the gene is composed.“
  8. Löwdin, P.-O.: Proton Tunneling in DNA and its Biological Implications. Reviews of Modern Physics 35 (3), 724-732 (1963).
  9. [2] Theodor Dingermann, Rudolf Hänsel, Ilse Zündorf: Pharmazeutische Biologie: Molekulare Grundlagen und klinische Anwendung, Springer, 2002, ISBN 3540428445, ISBN 9783540428442, S. 425
  10. Alberts et al., Molecular Biology of the Cell, 4. Aufl. 2002, S. 527
  11. http://kups.ub.uni-koeln.de/volltexte/2008/2294/ Ying Wang: Organisation of the cytoskeleton of the Drosophila oocyte, Kurzfassung in Deutsch, letzter Satz
  12. http://www-news.uchicago.edu/releases/05/20050908-humanbrain.shtml University of Chicago researchers find human brain still evolving, September 2005
  13. Truncating mutations in the Fanconi anemia J gene BRIP1 are low-penetrance breast cancer susceptibility alleles – Nature Genetics

News mit dem Thema Mutation

Die News der letzten Tage