Genregulation


Übergeordnet
(Regulation der) Genexpression
(Regulation des) Makromolekül-Metabolismus
Untergeordnet
Epigenetische Genregulation
Regulation der Transkription
Reg. der mRNA-Prozessierung
Regulation der Translation
Reg. der Proteinprozessierung
Gene Ontology
QuickGO

Genregulation bezeichnet in der Biologie die Steuerung der Aktivität von Genen, genauer gesagt, die Steuerung der Genexpression. Sie legt fest, in welcher Konzentration das von dem Gen kodierte Protein in der Zelle vorliegen soll. Dabei gibt es verschiedene Ebenen, auf denen die Regulation stattfinden kann: Als "Genexpression" wird der gesamte Prozess des Umsetzens der im Gen enthaltenen Information in das entsprechende Genprodukt bezeichnet. Dieser Prozess erfolgt in mehreren Schritten. An jedem dieser Schritte können regulatorische Faktoren einwirken und den Prozess steuern.

Bei Prokaryoten dient die Genregulation zu großen Teilen einer Anpassung an eine wechselnde Umgebung, zum Beispiel an ein vermindertes Sauerstoff- oder ein wechselndes Nährstoffangebot. Eukaryotische Zellen sind bis auf die Protisten weniger stark darauf angewiesen, auf schwankende Umweltbedingungen zu reagieren, haben dafür aber die schwierige Aufgabe, bei mehrzelligen Organismen die Entwicklung zu steuern. Hierfür muss gewährleistet sein, dass zum richtigen Zeitpunkt im richtigen Gewebe in den richtigen Zellen die notwendigen Gene aktiviert werden. In ausdifferenzierten Zellen hat das einmal festgelegte Expressionsprogramm dann deutlich weniger Regulationsbedarf.

Die grundlegenden Prinzipien der Genregulation sind in allen Zellen gleich, es gibt jedoch sowohl bei Prokaryoten als auch bei Eukaryoten jeweils Besonderheiten. Zum Beispiel sind in Bakterien Gene in Operons organisiert, welche in Eukaryoten nicht vorkommen. Eukaryoten besitzen dagegen Mechanismen zur Prozessierung von Transkripten, die zusätzliche Ansatzpunkte von regulatorischen Faktoren bieten.

Bei Operons wird unterschieden in Positive Regulation und Negative Regulation. Bei der positiven Regulation benötigt die RNA-Polymerase einen Aktivator, der an die DNA bindet, damit die Transkription erfolgen kann. Bei der Negativen Regulation bindet ein Repressor an die DNA und die RNA-Polymerase kann das Gen nicht transkribieren. Außerdem können bestimmte Substrate die Aktivatoren und Repressoren aktivieren (Aktivator/Repressor kann an die DNA binden) oder inaktivieren (Aktivator/Repressor dissoziiert von DNA). Von Induktion spricht man, wenn das Substrat dazu führt, dass eine Translation (und damit Genexpression) erfolgen kann (Inaktivierung des Repressors bzw aktivierung des Aktivators). Repression bedeutet, das Substrat verhindert eine Genexpression (Aktivator wird inaktiviert bzw. Repressor aktiviert).

Schritte der Genexpression

An den nachfolgend aufgeführten Schritten der Genexpression wird die Regulation umgesetzt:

Initiation der Transkription

Hauptartikel:Transkriptionsinitiation

Der allererste Schritt, die Steuerung des Transkriptionsstartes, ist bei den meisten Genen der wichtigste. Hier wird die generelle Entscheidung gefällt, ob das Gen exprimiert (abgelesen) wird oder nicht, und zum Teil auch schon, wie viele mRNA-Moleküle entstehen sollen. Diese Entscheidung wird an den regulatorischen Sequenzen gefällt. Es handelt sich um Bereiche der DNA, die in unmittelbarer Nähe des Gens oder auch weiter weg liegen können (der Promotor), die jedoch selbst nicht transkribiert werden. An diese regulatorischen Sequenzen können Proteine binden, die die Transkription aktivieren oder hemmen (reprimieren). Diese Schlüsselproteine heißen Transkriptionsfaktoren, und sie ermöglichen der Zelle, Gene durch einen grundlegenden Mechanismus an- oder abzuschalten. Ein aktivierender Transkriptionsfaktor wird Aktivator, ein hemmender Repressor genannt.

Nach der Bindung der spezifischen Transkriptionsfaktoren an den Promotor bzw. Enhancer kommt es zu einer Änderung der Konformation des Chromatins. Dadurch wird es weiteren Proteinen so genannten basalen Transkriptionsfaktoren ermöglicht, ebenso an die DNA zu binden. Die basalen Transkriptionsfaktoren rekrutieren dann die RNA-Polymerase und die Transkription des Gens wird gestartet. Bindet ein Repressor an die regulatorischen DNA-Bereiche, verhindert er, dass sich weitere Transkriptionsfaktoren anlagern und behindert so eine Aktivierung des Gens. Eine weitere Form der Repression ist die so genannte transkriptionelle Interferenz. Hierbei befindet sich vor dem Promotor des Gens ein zweiter Promotor. Ist dieser aktiv, lagert sich an diesen die RNA-Polymerase an und synthetisiert nicht-kodierende RNA. Durch diese Transkription wird die Transkription des eigentlichen Gens verhindert.

Termination der Transkription

Für das Beenden der Transkription haben sich bei Pro- und Eukaryoten verschiedene Regulationsmechanismen herausgebildet. Die Effizienz der Termination ist entscheidend dafür, wie viele mRNA-Moleküle von dem Gen entstehen können, denn wenn die Polymerase nicht schnell genug vom DNA-Strang abfällt, kann, grob gesagt, das nächste Polymerase-Molekül nicht nachrücken und die Produktion der mRNA-Moleküle wird verlangsamt.

Termination bei Prokaryoten

Bei Prokaryoten unterscheidet man die Rho-unabhängige und die Rho-abhängige Termination. Außerdem gibt es einen Mechanismus, bei dem die Polymerase bald nach Transkriptionsbeginn wieder von der DNA abfällt, die Attenuation.

  • Einfache Termination: Die Rho-unabhängige oder einfache Termination nutzt Terminationssequenzen am "Ende" des Gens bzw. des Transkripts, die aus einem GC-reichen Abschnitt und einer Folge von Uridinresten bestehen, die zusammen eine Haarnadelstruktur bilden. Man muss sich diese wie eine Schlaufe vorstellen, die dadurch zustande kommt, dass sich Nukleotide eines Stranges mit Nukleotiden desselben Stranges miteinander wie in der Doppelhelix verbinden und dabei eine Schleife beschreiben. Wenn die RNA-Polymerase, die diesen Nukleotidstrang ja gerade erst erzeugt hat, mit der Schleife in Wechselwirkung tritt, hält sie an und fällt vom DNA-Strang ab.
  • Rho-abhängige Termination: Die Rho-abhängige Termination ist relativ selten und benutzt ein weiteres Protein, den Rho-Faktor. Es handelt sich um ein hexameres Protein, das von 70 bis 80 Nukleotiden des naszierenden (entstehenden) RNA-Stranges umschlungen wird und durch die Wechselwirkung mit der DNA aktiviert wird. Unter Verbrauch von ATP bewegt sich der Rho-Faktor an der neu-synthetisierten mRNA entlang, bis er auf die RNA-Polymerase trifft und das DNA-RNA-Hybrid, das die RNA-Polymerase herstellt, auftrennt. Dadurch fällt die RNA-Polymerase ab und die Transkription ist beendet. Der Rho-Faktor muss sich theoretisch also schneller an der DNA entlang bewegen als die Polymerase. Die Polymerase bewegt sich jedoch nicht kontinuierlich schnell an der DNA entlang, sondern verlangsamt sich immer wieder zwischendurch, was dem Rho-Faktor ermöglicht, aufzuholen.

Termination bei Eukaryoten

Die drei verschiedenen eukaryotischen RNA-Polymerasen (I, II und III) nutzen verschiedene Terminationsmechanismen, die noch nicht besonders gut untersucht sind. Es sind jedoch einige Gemeinsamkeiten und Unterschiede zur Termination bei Bakterien bekannt:

  • Die RNA-Polymerase I, die rRNA-Gene transkribiert, benötigt einen Rho-ähnlichen Terminationsfaktor, der allerdings nicht an die RNA, sondern stromabwärts an die DNA bindet.
  • Die RNA-Polymerase II, die die mRNA transkribiert, beendet die Transkription vermutlich erst, wenn die Polyadenylierung erfolgt (siehe nächster Abschnitt).
  • Die RNA-Polymerase III, die die tRNA-Gene transkribiert, beendet die Transkription nach dem Einbau einer Reihe von Uracil-Nukleotiden.

Capping

Beim Capping wird 7-Methyl-Guanosin am 5'-Ende der prä-mRNA synthetisiert (5'-Cap-Struktur), was die Stabilität und die spätere Translation der RNA beeinflusst. Die 5'-Cap-Struktur erleichtert die Anlagerung der fertigen mRNA an das Ribosom in der Translation (Initiation).

Polyadenylierung

Fast alle mRNAs von tierischen Zellen tragen einen Poly(A)-Schwanz. Der Vorgang der Anheftung dieses Schwanzes wird als Polyadenylierung bezeichnet. Ähnlich wie die Termination der Transkription hängt die Stärke der Transkription von der Effizienz des Polyadenylierungsmechanismus' ab. Wenn die Anheftung des Poly(A)-Schwanzes nicht richtig funktioniert, wird die mRNA nicht etwa im Zellkern angehäuft, sondern schnell abgebaut. Hier können also regulatorische Faktoren ansetzen.

Spleißen

Beim Spleißen werden Introns aus der prä-mRNA entfernt und die verbleibenden Exons zusammengefügt. Für diesen Vorgang, der vom Spleißosom durchgeführt wird, gibt es bei vielen Genen Alternativen, auch Alternatives Spleißen genannt. Regulatorische Faktoren bestimmen, welche Introns gespleißt werden sollen und bestimmen so, wie die fertige mRNA aussehen wird.

Transport ins Cytoplasma

Der Transport der mRNA ins Cytoplasma erfolgt durch Poren in der Kernhülle. Nur fertig prozessierte mRNAs werden mit dem 5'-Ende voran durch die Kernpore geschleust und im Cytoplasma sofort mit Ribosomen besetzt. Hierzu wird die mRNA mit verschiedenen Proteinen zu einem hnRNP-Komplex zusammengefügt, der als fertiger mRNP durch die Kernporen wandern kann. Die Effizienz dieses Vorgangs bestimmt die Geschwindigkeit und die Menge an fertigen mRNAs, die ins Cytoplasma gelangen, und kann von Faktoren reguliert werden.

Initiation der Translation

Der Beginn der Translation ist bei einigen Genen der wichtigste Regulationsschritt, bei anderen spielt er kaum eine Rolle. Bei Eukaryoten wie auch bei Prokaryoten wird zunächst ein aus verschiedenen Proteinen bestehender Präinitiationskomplex gebildet, der mit der kleinen Untereinheit eines Ribosoms interagiert. Dieser Komplex erkennt dann die Translationsstartstelle. Die Möglichkeiten der Regulation sind hierbei wiederum sehr vielfältig. Sie reichen von der Verwendung spezifischer Initiationfaktoren bis hin zu einer generellen Abschaltung der Initiation, die erreicht werden kann, indem ein Serinrest eines Proteins des Präinitiationskomplexes (eIF2) phosphoryliert wird.

Die Translation einiger mRNAs kann auch durch antisense-RNAs blockiert werden, die sich komplementär an den 5'-Bereich der RNA anlagert und dadurch die Bindung der kleinen ribosomalen Untereinheit verhindert. Auch microRNAs spielen bei der Translationsregulation eine große Rolle.

Stabilität der mRNA

Nach der Initiation der Transkription und (bei einigen Genen) der Initiation der Translation ist die Regulation der Halbwertszeit einer mRNA der wichtigste Regulationsprozess. Die Konzentration einer mRNA hängt davon ab, wie schnell sie produziert wird und wie schnell sie wieder abgebaut wird. Wenn eine mRNA sehr stabil ist, kann die Proteinproduktion auch noch lange nach der Inaktivierung des Gens stattfinden. Für Proteine, die im Bedarfsfall schnell "ausgeschaltet" sein müssen, also nicht mehr vorhanden sein dürfen, ist deshalb eine kurzlebige mRNA von Vorteil.

Die meisten bakteriellen mRNAs haben nur eine Halbwertszeit von wenigen Minuten. Ausdifferenzierte eukaryotische Zellen haben zum großen Teil weniger Genregulationsbedarf (siehe oben), die mRNA-Moleküle vieler Gene erreichen Halbwertszeiten von mehreren Stunden. Andere eukaryotische Gene, die nur kurzfristig benötigt werden (zum Beispiel Hormone oder Cytokine), werden in kurzen "Ausbrüchen" exprimiert.

Die Stabilität einer mRNA wird unter anderem dadurch bestimmt, dass im untranslatierten 3'-Bereich des Transkripts mehrere AUUUA-Sequenzen vorkommen. Je mehr davon vorhanden sind, desto schneller wird die RNA abgebaut. Ein weiterer wichtiger Faktor für die Stabilität der mRNA ist die Länge des Poly(A)-Schwanzes. Je kürzer dieser ist, desto geringer die Halbwertszeit.

Epigenetische Regulation

Es gibt auch Gene, bei denen die Information darüber, ob das Gen in den Tochterzellen aktiviert oder reprimiert werden soll, nicht direkt in dem Gen vorliegt oder durch das Gen vermittelt wird, sondern durch die Transkriptionsfaktoren, die es regulieren. Die Transkriptionsfaktoren werden sozusagen "mitvererbt". Mit diesen Mechanismen beschäftigen sich die Epigenetik und das Imprinting.

Besondere Regulationsmechanismen

  • Autoregulation
  • Genregulation bei Entwicklungsvorgängen

Bestimmte Gene werden immer exprimiert und haben somit keinen Regulierungsbedarf, diese werden als Housekeeping-Gene bezeichnet.

genregulatorische Bereiche

Im Gen oder zum Gen gehörig gibt es bestimmte Bereiche, die für eine Regulation zuständig sind. Diese sind

Literatur

  • James E. Darnell, Harvey Lodish, David Baltimore: Molekulare Zellbiologie. de Gruyter, Berlin u. a. 1993, ISBN 3-11-011934-X (4. Auflage. Harvey Lodish: Molekulare Zellbiologie. Spektrum Akademischer Verlag, Heidelberg u. a. 2001, ISBN 3-8274-1077-0).
  • Benjamin Lewin: Molekularbiologie der Gene. Spektrum Akademischer Verlag, Heidelberg u. a. 1998, ISBN 3-8274-0234-4.

News mit dem Thema Genregulation