Erythromycin

Strukturformel
Erythromycin A
Erythromycin A
Allgemeines
Freiname Erythromycin
Andere Namen
  • IUPAC: 6-(4-Dimethylamino-3-hydroxy-6-methyl- oxan-2-yl)oxy-14-ethyl-7,12,13-trihydroxy- 4-(5-hydroxy-4-methoxy-4,6-dimethyl- oxan-2-yl)-oxy-3,5,7,9,11,13-hexamethyl- 1-oxacyclotetradecan-2,10-dion
  • Latein: Erythromycinum
Summenformel C37H67NO13
CAS-Nummer 114-07-8
PubChem 12560
ATC-Code
DrugBank DB00199
Kurzbeschreibung

weißer bis gelber, kristalliner, geruchloser Feststoff[1]

Arzneistoffangaben
Wirkstoffklasse

Makrolid-Antibiotikum

Wirkmechanismus

Hemmung der bakteriellen Proteinsynthese

Verschreibungspflichtig: Ja
Eigenschaften
Molare Masse 733,93 g·mol−1
Dichte

1,209 g/cm3 [2]

Schmelzpunkt
  • 138 °C (Hydrat)[1]
  • 190–193 °C (wasserfrei)[3]
  • 135 – 140 °C[4]
pKs-Wert

8,6–8,8[3]

Löslichkeit
  • sehr gering (nimmt mit zunehmender Temperatur ab)[3]
  • 2,0 g/l bei 20 °C[4]
Brechungsindex

1,535 [2]

Sicherheitshinweise
Bitte die eingeschränkte Gültigkeit der Gefahrstoffkennzeichnung bei Arzneimitteln beachten
GHS-Gefahrstoffkennzeichnung [4]
08 – Gesundheitsgefährdend

Gefahr

H- und P-Sätze H: 317-334
P: 261-​285 [4]
EU-Gefahrstoffkennzeichnung [4]

Xn
Gesundheits-
schädlich
R- und S-Sätze R: 42/43
S: 36/37/39
LD50
  • 9272 mg·kg−1 (Ratte, oral)[4]
  • 4600 mg·kg−1 (Ratte, oral)[1]
  • 426 mg·kg−1 (Maus, i.v.)[4]
  • 2580 mg·kg−1 (Maus, oral)[1]
  • 3018 mg·kg−1 (Hamster, oral)[1]
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen. Brechungsindex: Na-D-Linie, 20 °C
Vorlage:Infobox Chemikalie/Summenformelsuche vorhanden


Erythromycin ist ein Stoffgemisch aus strukturell sehr ähnlichen Verbindungen, die von Bakterien der Gattung Streptomyces, hauptsächlich von Streptomyces erythreus, gebildet werden. Wegen seiner antibiotischen Wirkung wird Erythromycin als Arzneistoff verwendet.

Die Hauptkomponente ist das Erythromycin A, daneben kommen bis zu 5 % Erythromycin B und in geringerer Menge Erythromycin C vor.[5] Chemisch zählt Erythromycin zu den Glycosiden, pharmakologisch gehört es zu den Makrolidantibiotika. Verwendet wird Erythromycin zur Behandlung von Infektionen mit grampositiven Keimen (Streptokokken, Staphylokokken), anaeroben Keimen (Propionibakterien, Corynebakterien) und Mykoplasmen.

Geschichte

1949 schickte der philippinische Wissenschaftler Abelardo Aguilar Bodenproben aus der Provinz Iloilo an seinen Arbeitgeber, das Pharmaunternehmen Lilly. Dort isolierte eine Arbeitsgruppe unter James M. McGuire Erythromycin als Stoffwechselprodukt von Streptomyces erythreus (heute Saccharopolyspora erythraea). Seit 1952 als Ilosone® vermarktet erhielt Lilly 1953 das U.S. Patent 2,653,899 für diese Verbindung. Die Totalsynthese des Erythromycins gelang Robert B. Woodward und Mitarbeitern 1981.[6][7][8]

Wirkungsmechanismus

Erythromycin hemmt den durch den Elongationsfaktor EF-G katalysierten Vorgang der Translokation bei der Translation. EF-G hat dabei die Funktion einer GTPase, bewirkt also den Zerfall von GTP in GDP+Pi. Die dabei frei werdende Energie wird genutzt, um die freien tRNA-Moleküle aus dem Ribosom zu lösen und so dessen Fortbewegung zu ermöglichen. Ein Fehlen des Elongationsfaktors verhindert die Proteinbiosynthese.

Erythromycin wirkt gegen grampositive Keime, gegen wenige gramnegative Keime (Bordetella, Legionellen, Chlamydien) sowie gegen Mykoplasmen und einige Rickettsien. Es ist ein Schmalspektrumantibiotikum.

Klinische Angaben

Anwendungsgebiete

Das Wirkungsspektrum von Erythromycin ist mit dem Wirkungsspektrum von einigen Penicillinen vergleichbar, wodurch sich ähnliche Anwendungsgebiete ergeben. Daher kann Erythromycin eingesetzt werden, wenn Allergien gegen β-Lactam-Antibiotika bestehen oder wenn Resistenzen deren Anwendung verhindern.

Eine orale Therapie ist angezeigt bei durch Erythromycin-empfindliche Krankheitserreger verursachten Infektionskrankheiten des Hals-, Nasen- und Ohrbereichs (Mittelohrentzündung, Nasennebenhöhlenentzündung), der tiefen Atemwege (Bronchitis, Lungenentzündung), der Bindehaut, bei Wundrose (Erysipel), Diphtherie, schweren Formen der Akne vulgaris und bestimmten Formen der Harnröhrenentzündung. Wenn (besser wirksame) andere Antibiotika nicht gegeben werden können, z. B. bei Penicillinallergie, ist Erythromycin auch angezeigt zur Behandlung von Entzündungen des Rachenraums (Pharyngitis) oder der Rachenmandeln (Tonsillitis), des Scharlach oder der Syphilis.

Ist die orale Gabe nicht möglich, kann Erythromycin parenteral verabreicht werden.

Topisch kommt Erythromycin insbesondere in der Therapie entzündlicher Akneformen zum Einsatz.

Erythromycin kann auch bei Motilitäts- und Entleerungsstörungen des Magens eingesetzt werden, wenn die first-line Medikamente Metoclopramid und Domperidon keine Besserung erzielen. Die Anwendung von Erythromycin als Prokinetikum geschieht allerdings unter den Voraussetzungen des Off-Label-Use. Erythromycin bindet bereits in subantibiotischen Dosen an den Motilinrezeptor und bewirkt so eine Förderung der gastrointestinalen Peristaltik, eine Relaxation der Pylorusmuskulatur und koordiniert die motorischen Aktivitäten des Magens und Duodenums.[9]

Wechselwirkungen und Nebenwirkungen

Erythromycin ist ein Hemmstoff des Cytochroms P450 3A4.[10] Somit ist die Biotransformation von Arzneistoffen, bei denen dieses Enzym beteiligt ist, z. B. Ciclosporin, Diazepam, Lidocain, Warfarin u. v. a., beeinträchtigt, was zur Wirkstoffakkumulation und zur Verstärkung von Haupt- und Nebenwirkungen führt.[11]

Erythromycin ist gut verträglich, die häufigsten unerwünschten Wirkungen sind leichte Magen-Darm-Störungen. Sehr selten treten anaphylaktische Reaktionen, Tinnitus oder meist vorübergehende Hörverluste bzw. Taubheit auf.

Chemische und pharmazeutische Informationen

Gemeinsam ist den Erythromycinen ein 14-gliedriger Lactonring ohne Doppelbindungen (Erythronolid-Struktur). Dieser ist an jedem zweiten C-Atom methylverzweigt und ist glykosidisch am C-6 mit dem Aminozucker Desosamin verknüpft und am C-4 mit einem Neutralzucker (Erythromycin A und B: Cladinose, Erythromycin C und D: Mycarose).

Erythromycin A ist in Wasser schwer löslich und bildet farblose bis schwach gelbliche Kristalle.

Die Erythromycine sind trocken stabil, zersetzen sich jedoch in Lösung schon bei Raumtemperatur allmählich. Beim Erhitzen über 60 °C sowie in saurer oder alkalischer Lösung geschieht der Abbau rapide.[3]

Struktur der Erythromycine
Erythromycin Allgemeine Struktur R1 R2
A Erythromycin A B C.svg –OH –CH3
B –H –CH3
C –OH –H

Pharmakokinetik

Erythromycin, mikronisiert

Erythomycin wird überwiegend biliär mit einer Halbwertzeit von 1,5-2,5 Stunden ausgeschieden. Daher ist Verabreichung im etwa 6-stündlichen Rhythmus angezeigt.[12]

Salze und Ester

Erythromycinbase ist nicht säurestabil, so dass für die perorale Behandlung entweder magensaftresistente Arzneiformen zur Anwendung kommen oder aber säurefeste Derivate des Erythromycins in der Arzneimittelherstellung verwendet werden müssen: so werden die Ester der Hydroxygruppe am C-2’ des Desoxamins, Erythromycinstearat und Erythromycinethylsuccinat und Erythromycinestolat, das Dodecylsulfatsalz des Erythromycinpropionats, in Tabletten, Kapseln und Suspensionen eingesetzt. Die Ester sind Prodrugs, da die freie 2'-OH-Gruppe des Aminozuckers für die Bindung wichtig ist.

Wasserlösliche Salze wie Erythromycinlactobionat werden für die Herstellung parenteraler Arzneiformen verwendet.

Erythromycin als freie Base wird in äußerlich anzuwendenden Zubereitungen verwendet, etwa in alkoholischen Lösungen, Gel-, Creme- oder Salbengrundlage (z. B. zur topischen Therapie der Akne).

Andere Derivate

Erythromycin ist die Leitsubstanz der Makrolidantibiotika. Durch Partialsynthese gewinnt man aus Erythromycin das 7-O-Methyl-Erithromycin (Clarithromycin) und Erythromycin-9-{(E)-O- [(2-methoxyethoxy)methyl]oxim} (Roxithromycin).

Das ringsubstituierte Azithromycin unterscheidet sich vom Erythromycin A durch die Erweiterung der Erythronolid-Struktur um ein C-Atom zwischen C-9 und C-10, die Carbonylfunktion am C-10 durch eine Methylaminogruppe ersetzt ist (Azalid).

Clarithromycin, Roxithromycin und Azithromycin werden ebenfalls als Arzneistoffe verwendet.

Handelsnamen

Monopräparate

AknedermEry (D), Aknefug-EL (D), Aknemycin Lösung/ Salbe (D), Aknilox (CH), Erios (CH), Eryaknen (D, A, CH), Eryfluid (A), Erythrocin (A), Inderm (D), Infectomycin (D), Meromycin (A), Paediathrocin (D), Sanasepton (D), Stiemycine (D), zahlreiche Generika (D, A, CH)

Kombinationspräparate

Aknemycin Emulsion/ Plus/ Salbe (D, A, CH), Ecolicin (D), Isotrexin (D, A), Zineryt (D)

Tiermedizin

Erythrocin vet., Erythrocin, Erythromycinthiocyanat, Erytrotil

Weblinks

Literatur

Einzelnachweise

  1. 1,0 1,1 1,2 1,3 1,4 Datenblatt Erythromycin bei Merck, abgerufen am 15. Dezember 2010.
  2. 2,0 2,1 Erythromycin bei ChemSpider
  3. 3,0 3,1 3,2 3,3 F. von Bruchhausen, S. Ebel, A. W. Frahm, E. Hackenthal: Hagers Handbuch der Pharmazeutischen Praxis. Bd. 8 Stoffe E–O 5. Auflage, S. 70, Birkhäuser, 1991, ISBN 978-3-540-52688-9.
  4. 4,0 4,1 4,2 4,3 4,4 4,5 4,6 Datenblatt Erythromycin, mikronisiert bei Caelo, abgerufen am 8. Juli 2011.
  5. Theodor Dingermann (Hrsg.), Rudolf Hänsel (Hrsg.) und Ilse Zündorf (Hrsg.): Pharmazeutische Biologie: Molekulare Grundlagen und klinische Anwendungen. Springer Verlag Berlin; 1. Auflage 2002; ISBN 3-540-42844-5; S. 316–317.
  6. Woodward, R.B. et al. (1981): Asymmetric Total Synthesis of Erythromycin. 1. Synthesis of an Erythronolide A Seco Acid Derivative via Asymmetric Induction. In: Journal of the American Chemical Society. 103:3210.
  7. Woodward R.B. et al. (1981): Asymmetric Total Synthesis of Erythromycin. 2. Synthesis of an Erythronolide A Lactone System. In: Journal of the American Chemical Society. 103:3213.
  8. Woodward R.B. et al. (1981): Asymmetric Total Synthesis of Erythromycin. 3. Total Synthesis of Erythromycin. In: Journal of the American Chemical Society. 103:3215.
  9. Mutschler, Arzneimittelwirkungen, 9. Auflage, Wissenschaftliche Verlagsgesellschaft Stuttgart, 2008 ISBN 978-3-8047-1952-1
  10. Ray, WA. et al. (2004): Oral Erythromycin and the Risk of Sudden Death from Cardiac Causes. In: N. Engl. J. Med. 351(11); 1089–1096. PMID 15356306 PDF (freier Volltextzugriff, engl.)
  11. Robertson, GR. et al. (2003): Transgenic mouse models of human CYP3A4 gene regulation. In: Mol Pharmacol. 64(1); 42–50. PMID 12815159 PDF (freier Volltextzugriff, engl.)
  12. H. Lüllmann, K. Mohr, L. Hein: Pharmakologie und Toxikologie, 16. Aufl. Georg Thieme Verlag, Stuttgart, 2006.
Gesundheitshinweis Bitte den Hinweis zu Gesundheitsthemen beachten!

Diese Artikel könnten dir auch gefallen

Die News der letzten 7 Tage

04.08.2021
Anthropologie | Toxikologie | Land-, Forst- und Viehwirtschaft
Mehr Vielfalt auf unseren Tellern und Feldern
Als Beitrag zur Nahrungsmittelsicherheit und -vielfalt in Subsahara Afrika soll ein dort vorkommendes vitamin- und mineralstoffreiches Blattgemüse in Kultur genommen werden.
04.08.2021
Ökologie | Klimawandel
Tauender Permafrost lässt Methan aus der Tiefe entweichen
In einer Studie haben Geologen die räumliche und zeitliche Verteilung der Methankonzentration in der Luft Nordsibiriens mit geologischen Karten verglichen.
04.08.2021
Anthropologie | Physiologie
Der Knick in der Optik
Wenn Menschen ein Objekt fixieren, kommt sein Bild nicht an der Stelle der Netzhaut zu liegen, an der die Zellen am dichtesten sind.
03.08.2021
Mikrobiologie | Evolution | Video
Zunehmend längere Tage: Wie der Sauerstoff auf die Erde kam
Das heutige Leben auf der Erde ist ohne Sauerstoff unvorstellbar.
03.08.2021
Bionik, Biotechnologie, Biophysik | Land-, Forst- und Viehwirtschaft
Eine Alternative zum Fischfang
Schon heute gelten rund 90 Prozent aller Fischbestände als maximal befischt oder überfischt, doch angesichts der wachsenden Weltbevölkerung sind immer mehr Menschen auf Fisch als Proteinquelle angewiesen.
03.08.2021
Evolution | Insektenkunde
Die Evolution der Wandelnden Blätter
Ein internationales Forschungsteam hat die Evolution der Wandelnden Blätter untersucht: Wandelnde Blätter gehören zu den Stab- und Gespenstschrecken, die anders als ihre etwa 3000 astförmigen Verwandten keine Zweige imitieren.
02.08.2021
Biodiversität | Insektenkunde
Verlust der Gefleckten Schnarrschrecke
Eine Senckenberg-Wissenschaftlerin hat mit einem internationalen Team das Verschwinden der Gefleckten Schnarrschrecke in Europa untersucht.
02.08.2021
Mikrobiologie | Ökologie | Virologie
Nahrungskette in der Dunkelheit
Die Entdeckung ist bahnbrechend: Im Untergrund unseres Planeten leben bisher unbekannte Viren, sie befallen einzellige Mikroorganismen, die sogenannten Altiarchaeen.
02.08.2021
Bionik, Biotechnologie und Biophysik | Entwicklungsbiologie | Video
Drei weitere Embryonen des Nördlichen Breitmaulnashorns
In einem weiteren Schritt zur Rettung des Nördlichen Breitmaulnashorns hat das BMBF-geförderte BioRescue-Konsortium von internationalen Organisationen aus Wissenschaft und Artenschutz drei weitere Embryonen des Nördlichen Breitmaulnashorns erzeugt.
02.08.2021
Physiologie | Neurobiologie | Biochemie
Energie für eine ungestörte Ruhe
Ein Hormon sorgt bei der Taufliege Drosophila für ein Gleichgewicht zwischen Ruhe und Aktivität.
02.08.2021
Physiologie | Ökologie | Vogelkunde | Insektenkunde
Viel Licht, wenig Orientierung
Lichtverschmutzung erschwert Mistkäfern die Orientierung im Gelände. Das dürfte auch auf andere nachtaktive Insekten und Vögel zutreffen, vermutet ein internationales Forschungsteam.
02.08.2021
Physiologie | Neurobiologie
Die komplexe Aufgabe Kurs zu halten
Mit verbundenen Augen geradeaus zu laufen, ist ein schwieriges Unterfangen: Meist endet es darin, dass wir im Kreis laufen.
31.07.2021
Ökologie | Neobiota
Teure Invasoren
Wissenschaftlerinnen haben die durch invasive Arten entstandenen Kosten in Europa und Deutschland untersucht.
31.07.2021
Anthropologie | Neurobiologie
Lernpausen sind gut fürs Gedächtnis
Wir können uns Dinge länger merken, wenn wir während des Lernens Pausen einlegen.
31.07.2021
Botanik | Immunologie | Parasitologie
Eichenwälder widerstandsfähiger machen
Kahlgefressene Eichen sind ein Bild, das in den letzten Jahren immer wieder zu sehen war. Verursacher sind häufig die massenhaft auftretenden Raupen des Eichenwicklers.
29.07.2021
Ökologie | Toxikologie
Wasser blau – Badestrand grün
Viele klare Seen der Welt sind von einem neuen Phänomen betroffen: In Ufernähe, wo Menschen spielen oder schwimmen, ist der Seeboden mit grünen Algenteppichen bedeckt.
29.07.2021
Anatomie | Paläontologie
Patagonischer Langhalssaurier neu beleuchtet
Ein Team der Bayerischen Staatssammlung für Paläontologie und Geologie (SNSB-BSPG) untersuchte im Rahmen einer Neubeschreibung die Überreste des Langhalssauriers Patagosaurus fariasi (175 Mio Jahre) aus Argentinien.
29.07.2021
Anthropologie | Virologie | Bionik, Biotechnologie, Biophysik
Hochwirksame und stabile Nanobodies stoppen SARS-CoV-2
Ein Forscherteam hat Mini-Antikörper entwickelt, die das Coronavirus SARS-CoV-2 und dessen gefährliche neue Varianten effizient ausschalten.
29.07.2021
Zytologie | Biochemie
Pflanzen haben ein molekulares „Gedächtnis“
Wie eine Pflanze wächst, hängt einerseits von ihrem genetischen Bauplan ab, zum anderen aber davon, wie die Umwelt molekulare und physiologische Prozesse beeinflusst.
29.07.2021
Ökologie | Bionik, Biotechnologie, Biophysik | Meeresbiologie
Forschungsfahrt: Hydrothermale Wolken in der Nähe der Azoren
Sie entstehen, wenn von glühendem Magma aufgeheizte Lösungen aus der Erdkruste in der Tiefsee austreten und auf kaltes Meerwasser treffen: Hydrothermale Wolken stecken voller Leben, sie versorgen die Ozeane mit Nährstoffen und Metallen.
28.07.2021
Physiologie | Bionik, Biotechnologie und Biophysik
Spurensuche im Kurzzeitgedächtnis des Auges
Was wir sehen, hinterlässt Spuren: Mit schnellen Bewegungen, sogenannten Sakkaden, springt unser Blick zwischen verschiedenen Orten hin und her, um möglichst scharf abzubilden, was sich vor unseren Augen abspielt.