Rickettsien

Rickettsia
Rickettsia rickettsii in der Wirtszelle

Rickettsia rickettsii in der Wirtszelle

Systematik
Domäne: Bakterien (Bacteria)
Abteilung: Proteobacteria
Klasse: Alpha Proteobacteria
Ordnung: Rickettsiales
Familie: Rickettsiaceae
Gattung: Rickettsia
Wissenschaftlicher Name
Rickettsia
da Rocha-Lima 1916

Bakterien der Gattung Rickettsia sind parasitäre Organismen, die sich in vielen Zecken, Flöhen, Milben und Läusen als Vektoren (Überträger) finden.

Beim Menschen verursachen sie eine ganze Reihe von Krankheiten mit unterschiedlichen Krankheitsbildern, die medizinisch zur Gruppe der Rickettsiosen zusammengefasst werden. Als Beispiele seien genannt Fleckfieber (syn. Typhus exanthematicus), Rickettsienpocken, Brill-Zinsser-Krankheit, Boutonneuse-Fieber (Mittelmeer-Zeckenfleckfieber) und das Rocky-Mountains-Fleckfieber. Wie Viren gedeihen Rickettsien als intrazelluläre Parasiten ausschließlich in lebenden Zellen. Auf diese Weise gelingt es ihnen, dem Immunsystem ihrer Wirte zu entgehen. Die Bezeichnung „Rickettsien“ wird häufig für alle Mitglieder der Ordnung der Rickettsiales verwendet.

Namensgebend ist der Pathologe Howard Taylor Ricketts, der unter anderem das Rocky-Mountains-Fleckfieber erforschte, dessen Erreger er im Blut infizierter Menschen und in der als Vektor aktiven Viehzeckenart nachweisen konnte. 1909 reiste er nach Mexiko-Stadt, mit dem Ziel das Fleckfieber zu erforschen. Dabei infizierte er sich mit Rickettsien, so dass er 1910 an der Erkrankung verstarb.

Die Mehrzahl aller Rickettsien ist empfindlich gegenüber Antibiotika der Tetracyclin-Gruppe. In feuchten Medien erfolgt eine Abtötung bei 50 °C in 15 Minuten. Auch mit herkömmlichen Desinfektionsmitteln lassen sich die Pathogene wirksam zerstören.

Eigenschaften

Rickettsien sind gramnegative, hochgradig polymorphe (= vielgestaltige, pleomorphe) Organismen, die keine Sporen bilden. Häufig handelt es sich um runde (= Kokken) bis ovale Bakterien mit einem Durchmesser von 0,1 µm; sie können auch als Stäbchen (1-4 μm lang) oder Faden-artig (10 μm lang) auftreten. Gelegentlich bilden sie Ketten, meist kommen sie jedoch einzeln oder in Paaren vor. Als obligatorische intrazelluläre Organismen, hängt das Überleben der Rickettsien völlig von ihrer eukaryotischen Wirtszelle (meist Endothelzellen) ab, in deren Zytoplasma sie eindringen müssen, um vor dem Abwehrsystem des Wirts geschützt zu sein. Auch die Vermehrung durch Querteilung findet im Inneren der Wirtszelle statt. Die Freisetzung der Bakterien erfolgt anschließend durch Abschnürung aus der Zellmembran (Exozytose) oder durch Lyse, wodurch die Wirtszelle zerstört wird. Zumindest R. conorii ist zur Bewegung innerhalb der Wirtszelle fähig.[1]

Aufgrund ihrer Abhängigkeit von der Wirtszelle können die Parasiten im Labor nicht in künstlichen Nährmedien gehalten werden. Man züchtet sie daher entweder in biologischen Geweben oder Embryo-Kulturen (typischerweise werden Hühnerembryonen verwendet). Wegen ihrer Zellabhängigkeit und ihres reduzierten Stoffwechsels, wurden Rickettsien in der Vergangenheit als Mikroorganismen häufig irgendwo zwischen den Viren und den echten Bakterien eingruppiert, gleichsam als eine „Zwischenspezies“. Man bezeichnete sie lange auch als sog. „Große Viren“.

Mechanismus der Zellinvasion

Wie es Rickettsien gelingt, in eukaryotische Zellen einzudringen, war bislang ein Rätsel. Wissenschaftlern vom Institut Pasteur in Paris ist es Ende 2005 gelungen, anhand von Rickettsia conorii zwei am Eindringvorgang beteiligte Schlüsselproteine zu identifizieren.[2] Es handelt sich um das bakterielle Protein rOmpB und um das Säugerprotein Ku70, das sich normalerweise im Zellkern von Säugetierzellen findet. Offensichtlich kann es aber auch zur Zellmembran wandern, wo es vom Rickettsien-eigenen rOmpB festgehalten und zum Eindringen in die Zelle genutzt wird. Die Wissenschaftler bezeichneten Ku70 aufgrund dieser "verräterischen" Eigenschaft auch als "molekularen Handlanger" der Rickettsien.

Endosymbiontentheorie

Die Art Rickettsia prowazekii ist von besonderem Interesse der Endosymbiontentheorie in Bezug auf die Mitochondrien[3]. In dem Einzeller Reclinomonas americana wurden Mitochondrien mit dem größten bisher bekannten Genom gefunden. Man geht also davon aus, dass bei diesem Mitochondrium genetisch noch die größte Übereinstimmung mit dem ursprünglichen Symbionten übrig geblieben ist. Bei Vergleichen von Bakterien mit diesem Einzeller zeigte wiederum das vollständig sequenzierte Genom von Rickettsia prowazekii die größte Übereinstimmung. So kann man davon ausgehen, dass Rickettsia eine enge Verwandtschaft mit dem Vorfahren der Mitochondrien hat.

Als gesichert wird diese Annahme allerdings nicht angesehen. Das Genom von Rickettsia prowazekii ist wie auch das in den Mitochondrien zu findende Genom sehr klein. Beide sind in den Milliarden Jahren der Evolution vermutlich geschrumpft, weshalb auch eine starke Ähnlichkeit der Genstruktur keine klare Aussage zulässt. So könnten z. B. auch Rickettsia und das ursprüngliche Bakterium, das den Symbionten bildete, von einem gemeinsamen Vorfahren abstammen.

Gruppierung

Bezüglich ihrer Eigenschaft als humanpathogen werden Rickettsien gewöhnlich in folgende drei Gruppen gegliedert:

  • Zeckenbissfieber (spotted fever)
Organismus verursachte Krankheit Vorkommen
R. rickettsii Rocky-Mountains-Fleckfieber westliche Hemisphäre
R. akari Rickettsien-Pocken USA, frühere Sowjetunion
R. conorii Boutonneuse-Fieber („afrikanisches Zeckenbissfieber“)
leichter Verlauf: Lymphadenitis,
stark ausgeprägte Primärläsion, Exanthem
Mittelmeerländer, Afrika, Südwestasien, Indien
R. sibirica Sibirian tick typhus („nordasiatisches oder sibirisches Zeckenbissfieber“) Sibirien, Mongolei, nördliches China
R. australis Australian tick typhus („australisches Zeckenbissfieber“) Australien
R. japonica Japanisches Fleckfieber Japan
  • Fleckfieber (typhus)
Organismus verursachte Krankheit Vorkommen
R. prowazekii Klassischer Typhus exanthematicus, Brill-Zinsser-Krankheit, klassisches Fleckfieber weltweit
R. typhi murines Fleckfieber (endemischer Typhus) weltweit
  • Tsutsugamushi (scrub typhus) (Anm.: Bezeichnung unklar!)
Organismus verursachte Krankheit Vorkommen
R. tsutsugamushi
(jetzt eine eigene
Gattung, Orientia)
Tsutsugamushi-Krankheit (scrub typhus);   
schwerer Verlauf: Enzephalitis, Lymphadenitis,   
stark ausgeprägte Primärläsion, Exanthem
Südwestasien, nördliches Australien, Pazifische Inseln

Systematik

Folgende Arten sind in der Gattung Rickettsia zusammengefasst[4]:

  • Rickettsia aeschlimannii Beati et al. 1997
  • Rickettsia africae Kelly et al. 1996
  • Rickettsia akari Huebner et al. 1946
  • Rickettsia asiatica Fujita et al. 2006
  • Rickettsia australis Philip 1950
  • Rickettsia bellii Philip et al. 1983
  • Rickettsia canadensis corrig. McKiel et al. 1967
  • Rickettsia conorii Brumpt 1932
  • Rickettsia felis Bouyer et al. 2001, emend. La Scola et al. 2002
  • Rickettsia heilongjiangensis Fournier et al. 2006
  • Rickettsia helvetica Beati et al. 1993
  • Rickettsia honei Stenos et al. 1998
  • Rickettsia japonica Uchida et al. 1992
  • Rickettsia massiliae Beati & Raoult 1993
  • Rickettsia montanensis corrig. (ex Lackman et al. 1965) Weiss & Moulder 1984
  • Rickettsia parkeri Lackman et al. 1965
  • Rickettsia peacockii Niebylski et al. 1997
  • Rickettsia prowazekii da Rocha-Lima 1916 (Typusart)
  • Rickettsia raoultii Mediannikov et al. 2008
  • Rickettsia rhipicephali (ex Burgdorfer et al. 1978) Weiss & Moulder 1988
  • Rickettsia rickettsii (Wolbach 1919) Brumpt 1922
  • Rickettsia sibirica Zdrodovskii 1948
  • Rickettsia slovaca Sekeyová et al. 1998
  • Rickettsia tamurae Fournier et al. 2006
  • Rickettsia tsutsugamushi (Hayashi 1920) Ogata 1931
  • Rickettsia typhi (Wolbach & Todd 1920) Philip 1943

Quellen

  1. H. Ogata et al. Mechanisms of evolution in Rickettsia conorii and R. prowazekii. Science. 2001 Sep 14;293(5537):2093-8. PMID 11557893
  2. Martinez, J.J. et al. (2005): Ku70, a Component of DNA-Dependent Protein Kinase, Is a Mammalian Receptor for Rickettsia conorii. In: Cell. Bd 123, S. 1013-1023. PMID 16360032
  3. David N. Fredricks Introduction to the Rickettsiales and Other Intracellular Prokaryotes in: Martin Dworkin, Stanley Falkow, Eugene Rosenberg, Karl-Heinz Schleifer, Erko Stackebrandt (Hrsg.) The Prokaryotes, A Handbook of the Biology of Bacteria. 7 Bände, 3. Auflage, Springer-Verlag, New York u. a. O., 2006, ISBN 0-387-30740-0. Vol. 5: Proteobacteria: Alpha and Beta Subclasses ISBN 0-387-25495-1
  4. J.P. Euzéby: List of Prokaryotic Names with Standing in Nomenclature. (Genus Rickettsia)

Weblinks

 Commons: Rickettsien (Rickettsia) – Sammlung von Bildern, Videos und Audiodateien
Vorlage:Commonscat/WikiData/Difference

Diese Artikel könnten dir auch gefallen

Die letzten News

03.03.2021
Ökologie | Land-, Forst- und Viehwirtschaft
Produktion nachhaltiger Lebensmittel in Aquakulturen
Eine nachhaltige Lebensmittelproduktion in Aquakulturen ganz ohne Mikroplastik. Das ist das langfristige Ziel eines neuen und über zwei Jahre laufenden Forschungsprojektes.
03.03.2021
Botanik | Biochemie | Entwicklungsbiologie
Wie eine Pflanze ihr Wachstum reguliert
Pflanzen zeigen polares Wachstum: Der Spross von Pflanzen wächst zum Licht, um dieses optimal nutzen zu können und die Wurzeln wachsen in Richtung des Erdmittelpunktes in den Boden.
02.03.2021
Zytologie | Genetik
Genetisches Material in Taschen verpacken
Alles Leben beginnt mit einer Zelle.
02.03.2021
Biodiversität
Artenspürhunde - Schnüffeln für die Wissenschaft
Die Listen der bedrohten Tiere und Pflanzen der Erde werden immer länger.
28.02.2021
Anthropologie | Genetik
64 menschliche Genome als neue Referenz für die globale genetische Vielfalt
Eine internationale Forschungsgruppe hat 64 menschliche Genome hochauflösend sequenziert.
28.02.2021
Neurobiologie | Insektenkunde
Wie Insekten Farben sehen
Insekten und ihre hochentwickelte Fähigkeit Farben zu sehen und zum Beispiel Blüten unterscheiden zu können, sind von zentraler Bedeutung für die Funktion vieler Ökosysteme.
28.02.2021
Genetik | Virologie
Retroviren schreiben das Koala-Genom um
Koalas sind mit zahlreichen Umwelt- und Gesundheitsproblemen konfrontiert, die ihr Überleben bedrohen.
26.02.2021
Ökologie | Paläontologie
Student entwickelt ein neues Verfahren, um Millionen Jahre alte Ökosysteme zu rekonstruieren
Niklas Hohmann, Masterstudent der Geowissenschaften an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), hat einen neuen Algorithmus entwickelt, mit dem sich die Abfolge von Ökosystemen durch die Erdgeschichte besser rekonstruieren lässt.
26.02.2021
Klimawandel | Biodiversität | Land-, Forst- und Viehwirtschaft
Unterirdische Biodiversität im Wandel
Durch den globalen Wandel wird die Vielfalt der Bakterien auf lokaler Ebene voraussichtlich zunehmen, während deren Zusammensetzung sich auf globaler Ebene immer ähnlicher wird.
25.02.2021
Botanik | Ökologie | Klimawandel | Video
Wald im Trockenstress: Schäden weiten sich weiter aus
Ergebnisse der Waldzustandserhebung 2020 zeigen: Die anhaltenden Dürrejahre fordern Tribut.
24.02.2021
Physiologie | Primatologie
Geophagie: Der Schlüssel zum Schutz der Lemuren?
Kürzlich wurde eine transdisziplinäre Forschung über die Interaktionen zwischen Böden und Darm-Mykobiom (Pilze und Hefen) der Indri-Indri-Lemuren veröffentlicht.
24.02.2021
Mikrobiologie | Evolution
Vom Beginn einer evolutionären Erfolgsstory
Unser Planet war bereits lange von Mikroorganismen besiedelt, bevor komplexere Lebewesen erstmals entstanden und sich nach und nach zur heute lebenden Tier- und Pflanzenwelt entwickelten.
24.02.2021
Genetik
Cre-Controlled CRISPR: konditionale Gen-Inaktivierung wird einfacher
Die Fähigkeit, ein Gen nur in einem bestimmten Zelltyp auszuschalten, ist für die modernen Lebenswissenschaften wesentlich.
24.02.2021
Land-, Forst- und Viehwirtschaft | Fischkunde
Bald nur noch ängstliche Fische übrig?
Über die Fischerei werden vor allem größere und aktivere Fische aus Populationen herausgefangen.
23.02.2021
Anthropologie | Neurobiologie
Placebos wirken auch bei bewusster Einnahme
Freiburger Forschende zeigen: Scheinmedikamente funktionieren auch ohne Täuschung. Probanden waren über Placebo-Effekt vorab informiert.
23.02.2021
Botanik | Klimawandel
Auswirkungen des Klimas auf Pflanzen mitunter erst nach Jahren sichtbar
Die Auswirkungen von Klimaelementen wie Temperatur und Niederschlag auf die Pflanzenwelt werden möglicherweise erst Jahre später sichtbar.
23.02.2021
Ökologie | Klimawandel
Biologische Bodenkrusten bremsen Erosion
Forschungsteam untersucht, wie natürliche „Teppiche“ Böden gegen das Wegschwemmen durch Regen schützen.
23.02.2021
Mikrobiologie | Meeresbiologie
Süße Algenpartikel widerstehen hungrigen Bakterien
Eher süß als salzig: Mikroalgen im Meer produzieren jede Menge Zucker während der Algenblüten.
21.02.2021
Evolution | Biochemie
Treibstoff frühesten Lebens – organische Moleküle in 3,5 Milliarden Jahre alten Gesteinen nachgewiesen
Erstmalig konnten biologisch wichtige organische Moleküle in archaischen Fluideinschlüssen nachgewiesen werden. Sie dienten sehr wahrscheinlich als Nährstoffe frühen Lebens auf der Erde.
21.02.2021
Evolution | Biochemie
Origin of Life - Begann die Darwin’sche Evolution schon, bevor es Leben gab?
Ehe Leben auf der Erde entstand, gab es vor allem eines: Chaos.
21.02.2021
Anthropologie | Neurobiologie
Kommunikationsfähigkeit von Menschen im REM-Schlaf
Mit schlafenden Versuchspersonen lassen sich komplexe Nachrichten austauschen. Das haben Wissenschaftler jetzt in Studien gezeigt.
21.02.2021
Paläontologie | Insektenkunde
Fossile Larven - Zeitzeugen in Bernstein
Eine ungewöhnliche Schmetterlingslarve und eine große Vielfalt an Fliegenlarven. LMU-Zoologen haben in Bernstein fossile Bewohner Jahrmillionen alter Wälder entdeckt.
21.02.2021
Ethologie | Ökologie
Wölfe in der Mongolei fressen lieber Wild- als Weidetiere
Wenn das Angebot vorhanden ist, ernähren sich Wölfe in der Mongolei lieber von Wildtieren als von Weidevieh.
21.02.2021
Meeresbiologie
Neuer Wohnort im Plastikmüll: Biodiversität in der Tiefsee
Ein internationales Forscherteam findet einen neuen Hotspot der Biodiversität – und zwar ausgerechnet im Plastikmüll, der sich seit Jahrzehnten in den Tiefseegräben der Erde ansammelt.
19.02.2021
Meeresbiologie | Land-, Forst- und Viehwirtschaft
Durch Aquakultur gelangt vom Menschen produzierter Stickstoff in die Nahrungskette
Ausgedehnte Aquakulturflächen entlang der Küsten sind in Südostasien sehr verbreitet.