Massenaussterben
- Seiten, die Timeline verwenden
- Wikipedia:Vorlagenfehler/Vorlage:Literatur/Parameterfehler
- Wikipedia:Vorlagenfehler/Vorlage:Cite journal/temporär
- Evolutionsökologie
- Historische Geologie
- Naturschutzökologie
- Paläontologie
Von einem Massenaussterben (auch Massenextinktion) spricht man, wenn in geologisch relativ kurzen Zeitabschnitten (das können durchaus Zeiträume von einigen hunderttausend Jahren sein) ein überproportional großes Aussterben stattfindet, so dass man die nachfolgenden geologischen Schichten durch das Fehlen bestimmter Organismen klassifizieren kann. Die Erdgeschichte wird unter anderem durch genau diese Aussterbeereignisse in Erdzeitalter gegliedert. Seit Entstehung der Erde sind mehrere größere und kleinere Massenaussterben geologisch anhand der Fossilien erkennbar.
Die großen Massenaussterbeereignisse
Im Verlauf der Erdgeschichte kam es zu mehreren großen Massenaussterbeereignissen:
- Vor ca. 485 Millionen Jahren am Ende des Kambriums: Rund 80 % aller Tier- und Pflanzenarten starben aus. Auslöser waren vermutlich ein Klimawandel oder Meeresspiegelschwankungen. Viele Trilobiten (Dreilappkrebse), aber auch Conodonten oder Brachiopoden (Armfüßer) verschwanden.
- Vor ca. 444 Millionen Jahren im oberen Ordovizium: 50 % aller Arten starben aus, u. a. viele Brachiopoden. Die Trilobiten überlebten, doch ihre immense Vielfalt verringerte sich erheblich. Wahrscheinlich war das in dieser Zeit stattfindende Erscheinen von Landpflanzen dafür verantwortlich. Diese entzogen dem Boden Calcium, Magnesium, Phosphor und Eisen und ermöglichten damit eine chemische Verwitterung des Bodens, wodurch der Atmosphäre Kohlendioxid entzogen wurde. Dies wiederum kühlte das globale Klima um ca. 5 Grad ab.[1] Anderen Autoren zufolge wird dieses Aussterbeereignis mit einer erdnahen Supernova in Verbindung gebracht.[2] Einige Forscher vermuten, dass Spuren einer vergangenen erdnahen Supernova noch durch Spuren bestimmter Metall-Isotope in Gesteinslagen nachweisbar sind. Anreicherungen des Isotops 60Fe wurden beispielsweise in Tiefseegestein des Pazifischen Ozeans festgestellt.[3][4][5]
- Vor ca. 360 Millionen Jahren im oberen Devon (Kellwasser-Ereignis): Erneut starben 50 % aller Arten aus, darunter einige Fische, Korallen und Trilobiten. Es starben auch etliche „Riffbauer“ unter den Korallen. Das hatte zur Folge, dass die Zahl der Korallenriffe abnahm. Einige Wissenschaftler sind der Meinung, dass dadurch der Sauerstoffgehalt im Wasser sank (sog. "ozeanisches anoxisches Ereignis"). Wer nun überleben wollte, musste sich den Gegebenheiten anpassen oder außerhalb des Wassers atmen können. Die Zeit der Amphibien war gekommen.
- Vor ca. 252 Millionen Jahren, innerhalb einer Zeitspanne von 200.000 Jahren[6] an der Perm-Trias-Grenze: 95 % aller meeresbewohnenden Arten sowie ca. 66 % aller landbewohnenden Arten (Reptilien- und Amphibienarten) starben aus; die genaue Ursache ist bis heute unbekannt. Ein Zusammenhang könnte mit dem damals entstandenen sibirischen Trapp, einem extrem großen Magmafeld bestehen, dessen Entstehung das Klima veränderte.[7] Neue Erkenntnisse zeigen, dass sich das Perm-Massensterben in drei Phasen gliedern lässt, wobei die erste Phase (an Land) durch den vom sibirischen Trapp verursachten extremen Klimawandel hervorgerufen worden sein könnte. Die Atmosphäre erwärmte sich um etwa 5 °C und mit der Zeit erhöhte sich auch die Temperatur der Ozeane, was verheerende Folgen auf das marine Leben gehabt hätte (Phase 2 – marines Massensterben). Der Temperaturanstieg in den Meeren hatte jedoch nicht nur Einfluss auf das Leben, sondern auch auf chemische Vorgänge am Boden der Ozeane. So ist es wahrscheinlich, dass durch den Temperaturanstieg die chemische Struktur des in der Tiefe der Meeresböden gebundenen Methanhydrats aufgebrochen wurde. Das in Wassermoleküle eingeschlossene Methan wurde freigesetzt und stieg als Gas in die Atmosphäre auf, wo es ca. 20 mal wirksamer als CO2 für eine relativ rasche Erwärmung der Atmosphäre um weitere 5 °C sorgte und die 3. Phase (wieder an Land) des Massensterbens einleitete.[8] Auch ein Drittel aller Insektenarten starb aus, das einzige bekannte Massenaussterben von Insekten in der Erdgeschichte. Von allen Massenaussterben war das im Perm das größte.
- Vor ca. 200 Millionen Jahren am Ende der Trias: 50 bis 80 % aller Arten, unter anderen fast alle Landwirbeltiere, starben aus. Hier wird ein Zusammenhang mit gewaltigen Magmafreisetzungen vor dem Auseinanderbrechen von Pangaea vermutet (central atlantic eruption)[9] bzw. die Vergiftung der flachen, warmen Randmeere durch große Mengen von Schwefelwasserstoff, nachdem gewaltige Vulkanausbrüche große Mengen an Kohlendioxid und Schwefeldioxid freigesetzt haben.[10][11]
- Vor ca. 66 Millionen Jahren an der Kreide-Tertiär-Grenze (gleichzeitig Übergang vom Erdmittelalter zur Erdneuzeit): wieder starben rund 50 % aller Tierarten aus, darunter mit Ausnahme der Vögel auch die Dinosaurier. Als Ursache werden zwei Ereignisse erörtert: Der Einschlag eines Meteoriten (KT-Impakt; übersetzt etwa Kreide-Tertiär-Einschlag) nahe der Halbinsel Yucatán und der kontinentale Ausbruch eines Plume in der Dekkan-Trapp in Vorderindien.
- Vor 33,9 Millionen Jahren fand im Rahmen der Grande Coupure eine Abkühlung des globalen Klimas mit damit verbundenem Artensterben und Faunentausch statt.
- Vor ca. 50.000-12.000 Jahren: Seit dem Ende des oberen Pleistozän, teilweise auch noch im Holozän, starb im Verlauf einer Quartären Aussterbewelle der Großteil der Megafauna Amerikas, Eurasiens und Australiens aus. Obwohl dieses Massenaussterben verhältnismäßig wenige Tierarten betraf, beschäftigt es die Menschen bis heute, da sehr viele sehr große, außergewöhnliche und bekannte Tierarten dabei waren, etwa das Mammut, das Wollnashorn und die Säbelzahnkatze. Die Gründe für diese auf den einzelnen Kontinenten zu unterschiedlichen Zeiten auftretende Aussterbewelle sind umstritten. Einige Forscher nehmen an, dass der Mensch diese Großsäuger durch übermäßige Bejagung (Overkill-Hypothese) ausgerottet hat. Diese Theorie wurde in der Öffentlichkeit auch durch bekannte Dokumentationen (Menschen gegen Monster bzw. Monsters we met, Großbritannien 2004; oder Wild New World, Großbritannien 2002) bekräftigt und ist besonders in den englischsprachigen Ländern weit verbreitet. In Fachkreisen ist diese Theorie jedoch umstritten; Klimaveränderungen am Ende der Eiszeit gelten ebenfalls als wahrscheinlich, eine Reduzierung auf menschliche Einflüsse allein oder als entscheidender Faktor wird heute von Teilen der Fachwelt abgelehnt.
- Heute: Die gegenwärtige Aussterbewelle wird durch den Menschen verursacht und begann vor ca. 8.000 Jahren im Holozän. Sie hält bis zum heutigen Tag an und beschleunigt sich dabei. Allerdings sind die Übergänge zu der Aussterbewelle des Pleistozäns fließend, weshalb von einer Quartären Aussterbewelle gesprochen werden muss. Beispielsweise verschwand das Wollhaarmammut erst im Holozän aus Sibirien. Auf der Wrangel-Insel überlebte es gar bis in die Zeit der ägyptischen Pharaonen. Seit der Sesshaftwerdung des Menschen in der Jungsteinzeit wurde die Tierwelt, insbesondere die Megafauna, stark zurückgedrängt, allerdings verschwanden damals deutlich weniger Arten als am Ende des Pleistozäns. Als Menschen ab ca. 800 n. Chr. erstmals Inseln besiedelten, rotteten sie die dortige Megafauna, die eine niedrige Reproduktionsrate und fehlende Fluchtreflexe hatte, durch übermäßige Jagd aus (etwa Neuseeland oder Madagaskar) oder brachten die ansässige Vogelwelt zum Verschwinden (Hawaii, Polynesien). Eine richtige Aussterbeflut brachte jedoch das Zeitalter der Entdeckungen ab ca. 1500, als Europäer andere Kontinente besiedelten, vermeintliche Schädlinge ausrotteten und Neozoen einschleppten (Ratten, Füchse, Schweine), denen die einheimische Fauna nur schwer gewachsen war.
Der Vergleich des heutigen Massenaussterbens mit den oben genannten Ereignissen der Erdgeschichte ist allerdings schwierig und auch problematisch, weil heute überwiegend deutlich andere Ursachen für den Rückgang der Artenvielfalt verantwortlich sind als in der geologischen Vergangenheit.
Ursachen
Die Ursachen von Massenaussterben sind ein vieldiskutiertes Thema der Paläontologie. Folgende Ereignisse werden als Ursache immer wieder diskutiert:
- Meteoriteneinschlag
- Hat ein Meteorit eine ausreichende Größe und Geschwindigkeit, wird bei seinem Einschlag eine so große Menge des Meteoriten- und Erdgesteins als feine Partikel in die Atmosphäre geschleudert, dass sich eine Staubschicht um die Erde legt, die fast jede Photosynthese und damit letztlich fast alles Leben auf der Erde unmöglich macht. Für das Massenaussterben am Ende der Kreide gilt ein Meteoriteneinschlag als Ursache für äußerst wahrscheinlich (Kreide-Tertiär-Grenze), für die übrigen steht ein solcher Beleg noch aus.
- Vulkanismus
- Starker Vulkanismus kann durch die in die Atmosphäre geblasene Asche die Sonneneinstrahlung behindern und zu einer Eiszeit führen. Andererseits können durch Vulkanismus auch ausgestoßene Treibhausgase (z. B. Kohlendioxid) eine globale Erwärmung verursachen, die ihrerseits weitere Treibhausgase freisetzen kann (z. B. Methan aus Methanhydrat durch einen deutlichen Temperaturanstieg in den Ozeanen). Eine derartige Entwicklung hin zu einem gigantischen Treibhauseffekt wird als Ursache für das Massensterben am Ende des Perm vermutet.
- Klimawandel
- Durch einen abrupten Klimawandel, insbesondere durch eine Eiszeit, kann großflächig Lebensraum verschwinden.
- Schwefelwasserstoff
- In Folge einer starken globalen Erwärmung kann es zur Freisetzung sehr großer Mengen des giftigen Gases Schwefelwasserstoff aus sauerstofffreien Ozeanen gekommen sein (P. Ward (2007)).
- Strahlung
- Eine in der Nähe stattfindende Supernova, ein extrem starker Sonnensturm oder ein Aufschlag auf einem Neutronenstern (Gammablitz)[12] würde Strahlung solcher Intensität erzeugen, dass komplexes Leben fast unmöglich wird. Ein Problem dieses Ansatzes ist, dass er praktisch nicht nachweisbar wäre, da die Strahlung nach einem solchen Zeitraum nicht mehr messbar ist. Zudem wurden in unserer unmittelbaren kosmischen Nachbarschaft keine geeigneten Objekte gefunden bzw. gibt es keinerlei Indizien für Sonnenstürme dieser Stärke.
Probleme bei der Erklärung von Massenaussterben
Bei der Erklärung von Massenaussterben treten vielfältige Probleme auf, von denen die wichtigsten sicherlich die gewaltigen zeitlichen Distanzen sowie die sehr dünn gesäten Fossilien sind. Beides zusammen erschwert die Rekonstruktion der Ereignisse, da teilweise nicht einmal die Geschwindigkeit des Massenaussterbens bekannt ist. So ist z. B. unklar, ob das Massenaussterben des Devon sich über einen Zeitraum von einem Jahr oder einer Million Jahre erstreckte. Der lückenhafte Fossilienbeleg erschwert nicht nur die Abschätzung des Ausmaßes eines Massensterbens, sondern auch das Auffinden einer spezifischen Ursache. So sollten bei einem durch Strahlung verursachten Massensterben strahlungsresistente Tiere wie z. B. Skorpione ungeschoren davongekommen sein. Die vorhandenen Fossilien erlauben eine solche Rekonstruktion jedoch nicht.
Ebenfalls ungeklärt ist, wieso nur bestimmte Tiergruppen aussterben und andere nicht. So starben z. B. am Ende der Kreide die Dinosaurier, Flugsaurier, Plesiosaurier und Fischsaurier aus, während alle anderen Wirbeltiergruppen (Fische, Amphibien, Reptilien, Vögel und Säuger) überlebten. Nimmt man wirklich eine Verdunkelung des Planeten und die fast vollständige Einstellung der Photosynthese an, sollten alle Tierarten davon gleich betroffen sein. Auch das Überleben blütenbestäubender Insekten kann nur schwer erklärt werden.
Bezieht man die aktuellen Fortschritte in der Geochronologie (Ar-Ar Datierungen, U-Pb Datierungen) mit in die Diskussion ein, wird der Sachverhalt noch komplizierter. Selbst wenn Massenaussterben durch großflächige Vulkanausbrüche und katastrophale Meteoriteneinschläge einen Zusammenhang vermuten lassen, könnte die Wahrheit jedoch ernüchternder aussehen. Die Verbesserung der Präzision aktueller Datierungsmethoden lässt eine noch nie dagewesene Genauigkeit zu, was den Ausbruchs- bzw. Einschlagszeitraum anbelangt und stellt längst gelöst geglaubte Probleme wieder in Frage. Ausbruchsphasen großer Vulkanprovinzen (LIPs, Large Igneous Provinces) erfolgen vergleichsweise über einen sehr langen Zeitraum und datierbare Proben geeigneter Qualität stellen letztendlich nur einen Ausschnitt einer längeren, aktiven Ausbruchsphase dar. Der Fehler in der Datierung kann mehrere Millionen Jahre betragen. Noch gravierender verhält es sich mit den Einschlagskratern von Meteoriten. Heutzutage sind 25 Krater mit einem Durchmesser von min. 20 km bekannt, jedoch ist brauchbares Material für eine Datierung nicht leicht zu finden. Mit eben genannten, präzisen Datierungsmethoden lassen sich beide Ereigniskategorien über Zerfallsreihen radioaktiver Isotope datieren und mit den Zeitpunkten der Aussterbeereignisse vergleichen. Jüngst wurde jedoch schnell klar, dass die Diskrepanz in den meisten Fällen so groß ist, dass von einem klaren Ursache-Wirkungs-Verhältnis zwischen katastrophaler Umweltänderung und Aussterbeereignis in einigen Fällen nicht die Rede sein kann. Aktuell muss z. B. das Sterben der Saurier an der Kreide-Paläogen Grenze (C-P boundary) möglicherweise in einem neuen Licht betrachtet werden.[13]
Auswirkungen von Massenaussterben
Massenaussterben beeinflussen den Verlauf der Evolution entscheidend. So entstanden z. B. die Dinosaurier nach dem Perm, wurden durch das Aussterben in der Trias zur dominanten Landwirbeltiergruppe und verschwanden am Ende der Kreide.
Nach Aussterbeereignissen folgt für gewöhnlich eine Phase der Expansion der überlebenden Organismen, oft durch so genannte Radiation. Diese Ausbreitung neuer Arten markiert neben dem Fehlen bestimmter Organismen den neuen erdgeschichtlichen Zeitabschnitt. Teilweise unterscheidet man zwischen Faunenschnitten, in denen viele Tierarten ausstarben und Florenschnitten, in denen viele Pflanzenarten verschwanden und durch neue ersetzt wurden.
Siehe auch
- Massensterben
- Paläo/Geologische Zeitskala
- Paläozoikum
- Peter Ward, Paläontologe mit Forschungsschwerpunkt KT-Massenaussterben
- Rare-Earth-Hypothese
Literatur
- Niles Eldredge: Wendezeiten des Lebens. Spektrum der Wissenschaft Verlagsgesellschaft, Heidelberg 1994, ISBN 3-86025-193-7.
- Ashraf Elewa (Hrsg.): Mass extinction. Berlin, 2008, ISBN 978-3-540-75915-7.
- Douglas H. Erwin: Das größte Massensterben der Erdgeschichte. Spektrum der Wissenschaft 9/1996, ISSN 0170-2971, S. 72–79.
- Steven M. Stanley: Krisen der Evolution. Spektrum der Wissenschaft Verlagsgesellschaft, Heidelberg 1988, ISBN 3-922508-89-8.
- Friedrich Strauch: Katastrophen und Aussterbeereignisse in der Erdgeschichte - zum Stand der Diskussion. Stuttgart, 2004, ISBN 3-515-08518-1.
- Rüdiger Vaas: Der Tod kam aus dem All. Meteoritenenschläge, Erdbahnkreuzer und der Untergang der Dinosaurier. Franckh-Kosmos, Stuttgart 1995, ISBN 3-440-07005-0.
- Peter D. Ward: Tod aus der Tiefe. Spektrum der Wissenschaft 3/2007, ISSN 0170-2971, S. 26–33.
Weblinks
- astris.de - Die Geschichte der Erde - Massensterben
- Die Ursachen des K/T-Massensterbens - Teil 1: Asteroiden-Impakt - Teil 2: Trapp-Vulkanismus
- scinexx - Springer-Verlag, Heidelberg
Einzelnachweise
- ↑ First plants caused ice ages ScienceDaily vom 1. Februar 2012
- ↑ Melott, A. et al.: Did a gamma-ray burst initiate the late Ordovician mass extinction? In: International Journal of Astrobiology. 3. Jahrgang, Nr. 2, 2004, S. 55–61, doi:10.1017/S1473550404001910 (arxiv.org [abgerufen am 1. Februar 2007]).
- ↑ Researchers Detect 'Near Miss' Supernova Explosion, University of Illinois College of Liberal Arts and Sciences. Fall/Winter 2005–2006, S. 17. Abgerufen am 1. Februar 2007.
- ↑ Knie, K. et al.: 60Fe Anomaly in a Deep-Sea Manganese Crust and Implications for a Nearby Supernova Source. In: Physical Review Letters. 93. Jahrgang, Nr. 17, 2004, S. 171103–171106, doi:10.1103/PhysRevLett.93.171103.
- ↑ Fields, B. D.; Ellis, J.: On Deep-Ocean Fe-60 as a Fossil of a Near-Earth Supernova. In: New Astronomy. 4. Jahrgang, 1999, S. 419–430, doi:10.1016/S1384-1076(99)00034-2 (arxiv.org [abgerufen am 1. Februar 2007]).
- ↑ Shu-zhong Shen u. a.: Calibrating the End-Permian Mass Extinction. In: Science, Online-Vorabveröffentlichung vom 17. November 2011, doi:10.1126/science.1213454
- ↑ Michael Reilly: The Armageddon factor. In: New Scientist, 8. Dezember 2007, S. 42–45.
- ↑ Nick Davidson: Der Tag, an dem die Erde beinahe unterging. Dokumentation, Großbritannien 2002, ARTE F
- ↑ Michael Reilly: The Armageddon factor. S. 44.
- ↑ Sylvain Richoz et al.: Hydrogen sulphide poisoning of shallow seas following the end-Triassic extinction. In: Nature Geoscience, Online-Vorabveröffentlichung vom 12. August 2012, doi:10.1038/ngeo1539
- ↑ Schwefelwasserstoff vergiftete Urzeit-Ozeane. 200 Millionen Jahre alte Sedimente zeigen Meereszustand nach großem Massensterbenscinexx, 14. August 2012
- ↑ Sternexplosionen für Massenaussterben auf der Erde verantwortlich?, scinexx, 8. Februar 2012.
- ↑ Simon Kelley: The geochronology of large igneous provinces, terrestrial impact craters, and their relationship to mass exctinctions on earth. In: Journal of the Geological Society. September 2007.