Multipendel
- Seiten mit Math-Fehlern
- Seiten mit Math-Renderingfehlern
- Seiten mit defekten Dateilinks
- Nichtlineare Dynamik
- Schwingung
- Dynamisches System (Physik)
Bei einem Multipendel handelt es sich um ein Fadenpendel, an dessen Arm beliebig viele weitere Pendel gehängt werden.
Es entsteht ein unvorhersehbares Bewegungsmuster, welches bereits bei geringfügigen Störungen stark variiert. Es lassen sich chaotische Prozesse leicht simulieren, weshalb es sich zu einem beliebten Modell in der Chaostheorie entwickelt hat.
Modellvorstellung
Das Modell des Multipendels $ n $-ter Stufe ist ein idealisiertes System eines Fadenpendels, an dessen schwingendem Massenpunkt $ n-1 $ weitere baugleiche Fadenpendel gekoppelt sind. Die verbindenden Fäden zwischen Aufhängepunkt und den Massenpunkten werden als vollkommen unelastische, massenlose Stäbe betrachtet. Das gesamte System wird als reibungsfrei aufgefasst.
Bewegungsgleichungen des Multipendels $ n $-ter Stufe
Die Bewegungsgleichungen für ein Multipendel $ n $-ter Stufe lassen sich mit dem Lagrange-Formalismus zweiter Art herleiten.
Generalisierte Koordinaten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (\varphi_1,...,\varphi_n)
Mittels Trigonometrie erhält man:
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): x_1=l_1 \sin\varphi_1
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): y_1=-l_1 \cos\varphi_1
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): x_2=l_1 \sin\varphi_1 + l_2 \sin\varphi_2
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): y_2=-l_1 \cos\varphi_1 - l_2 \cos\varphi_2
...
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): x_n=l_1 \sin\varphi_1 + ... + l_n \sin\varphi_n
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): y_n=-l_1 \cos\varphi_1 - ... - l_n \cos\varphi_n
Folglich können die kartesischen Koordinaten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): (x_k|y_k)
der Massenpunkte $ m_{k} $ für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): k
∈ {1,...,$ n $} und ihre zeitlichen Ableitungen in folgender Form geschrieben werden:
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): x_k = \sum_{i=1}^{k} l_i \sin\varphi_i
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \dot{x}_k = \sum_{i=1}^{k} l_i \dot{\varphi}_i \cos\varphi_i
$ y_{k}=-\sum _{i=1}^{k}l_{i}\cos \varphi _{i} $
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \dot{y}_k = \sum_{i=1}^{k} l_i \dot{\varphi}_i \sin\varphi_i
Lagrange-Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): L(\varphi_1,...,\varphi_n,\dot{\varphi}_1,...,\dot{\varphi}_n)
Kinetische Energie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): T und Potential $ V $ ergeben:
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): T(\varphi_1,...,\varphi_n,\dot{\varphi}_1,...,\dot{\varphi}_n) = \sum_{k=1}^{n} \frac{m_k}{2} (\dot{x}_k^2+\dot{y}_k^2)
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): V(\varphi_1,...,\varphi_n) = g \sum_{k=1}^{n} m_k y_k
Somit ist die Lagrange Funktion $ L=T-V $:
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): L(\varphi_1,...,\varphi_n,\dot{\varphi}_1,...,\dot{\varphi}_n) = \frac{1}{2} \sum_{k=1}^{n} m_k \left[\left(\sum_{i=1}^{k} l_i \dot{\varphi}_i \cos\varphi_i\right)^2+\left(\sum_{i=1}^{k} l_i \dot{\varphi}_i \sin\varphi_i\right)^2\right] + g \sum_{k=1}^{n} \sum_{i=1}^{k} m_k l_i \cos\varphi_i
Bewegungsgleichungen
Die Bewegungsgleichungen des Multipendels Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): n -ter Stufe ergeben sich aus
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {d\over dt}{\partial{L}\over \partial{\dot{\varphi}_j}} - {\partial{L}\over \partial{\varphi_j}} = 0
bzw.
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {d\over dt}{\partial{T}\over \partial{\dot{\varphi}_j}} - {\partial{}\over \partial{\varphi_j}} (T-V) = 0
für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): j ∈ {1,...,Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): n }.
Die Bewegungsgleichungen für die generalisierten Koordinaten (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\varphi_{1}},...,{\varphi_{n}}
) stellen ein nichtlineares System von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): n
Differentialgleichungen zweiter Ordnung dar, welches für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): n>1
analytisch nicht lösbar ist.
Es kann bei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): 2n
bekannten Nebenbedingungen, beispielsweise der Startwerte
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \left( \varphi_1(t=0),...,\varphi_n(t=0),\dot{\varphi}_1(t=0),...,\dot{\varphi}_n(t=0) \right)
mittels numerischer Verfahren gelöst werden. Zwecks Vereinfachung der Bewegungsgleichungen können Kleinwinkelnäherungen vorgenommen werden.
Für Stufen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): n>1 entstehen chaotische Bewegungsmuster. Hier führen bereits geringfügige Änderungen der lokalen Koordinaten und/oder ihrer zeitlichen Ableitungen zu deutlichen Änderungen im weiteren Bewegungsablauf.
Bewegungsgleichungen für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): j ∈ {1,2,3}
Mathematisches Pendel
Für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): n=1 ergibt sich der einfache Fall des mathematischen Pendels.
Hier ergeben sich kinetische Energie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): T und Potential Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): V zu
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): T(\varphi,\dot{\varphi}) = \frac{m}{2} l^2 \dot{\varphi}^2
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): V(\varphi) = -m g l \cos\varphi
mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): m:=m_1, l:=l_1, \varphi:=\varphi_1 .
Entsprechend ist die Bewegungsgleichung:
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \ddot{\varphi} + \frac{g}{l} \sin\varphi=0
Mit der Kleinwinkelnäherung $ \sin \varphi \approx \varphi $ lässt sich die Gleichung vereinfachen:
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \ddot{\varphi} + \frac{g}{l} \varphi=0
Eine zweckmäßige Lösung der Bewegungsgleichung ist
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \varphi(t)=\varphi(0) \cos\left(\sqrt{\frac{g}{l}} t + \alpha\right) ,
sodass bei bekannten Startbedingungen für den Parameter Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \alpha gilt:
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): \alpha=\arcsin\left(-\frac{\dot{\varphi}(0)}{\varphi(0)} \sqrt{\frac{l}{g}} \right)
Das Pendel schwingt entsprechend harmonisch mit der Periode:
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): T = 2\pi\sqrt{\frac{l}{g}}
Doppelpendel
Der Fall Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): n=2 stellt das Doppelpendel dar.
Hier ergeben sich kinetische Energie $ T $ und Potential Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): V zu:
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): T(\varphi_1,\varphi_2,\dot{\varphi}_1,\dot{\varphi}_2) = \frac{m_1}{2} l_1^2 \dot{\varphi}_1^2 + \frac{m_2}{2} \left( l_1^2 \dot{\varphi}_1^2 + l_2^2 \dot{\varphi}_2^2 + 2 l_1 l_2 \dot{\varphi}_1 \dot{\varphi}_2 \cos(\varphi_1-\varphi_2) \right)
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): V(\varphi_1,\varphi_2) = -(m_1+m_2) g l_1 \cos\varphi_1 - m_2 g l_2 \cos\varphi_2
Entsprechend sind die Bewegungsgleichungen:
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): m_{2}l_{2}\ddot{\varphi}_{2}\cos\left(\varphi_{1}-\varphi_{2}\right)+\left(m_{1}+m_{2}\right)l_{1}\ddot{\varphi}_{1}+m_{2}l_{2}\dot{\varphi}_{2}^{2}\sin\left(\varphi_{1}-\varphi_{2}\right)+\left(m_{1}+m_{2}\right)g\sin\varphi_{1}=0
und
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): l_{2}\ddot{\varphi}_{2}+l_{1}\ddot{\varphi}_{1}\cos\left(\varphi_{1}-\varphi_{2}\right)-l_{1}\dot{\varphi}_{1}^{2}\sin\left(\varphi_{1}-\varphi_{2}\right)+g\sin\varphi_{2}=0
Triplependel
Der Fall $ n=3 $ stellt das Triplependel dar.
Hier ergibt sich die kinetische Energie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): T zu:
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): T(\varphi_1,\varphi_2,\varphi_3,\dot{\varphi}_1,\dot{\varphi}_2,\dot{\varphi}_3) = \frac{m_1+m_2+m_3}{2} l_1^2 \dot{\varphi}_1^2 + \frac{m_2+m_3}{2} l_2^2 \dot{\varphi}_2^2 + \frac{m_3}{2} l_3^2 \dot{\varphi}_3^2 + (m_2+m_3) l_1 l_2 \dot{\varphi}_1 \dot{\varphi}_2 \cos(\varphi_1-\varphi_2)
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): + m_3 l_1 l_3 \dot{\varphi}_1 \dot{\varphi}_3 \cos(\varphi_1-\varphi_3) + m_3 l_2 l_3 \dot{\varphi}_2 \dot{\varphi}_3 \cos(\varphi_2-\varphi_3)
Für das Potential Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): V
gilt:
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): V(\varphi_1,\varphi_2,\varphi_3) = -(m_1+m_2+m_3) g l_1 \cos\varphi_1 - (m_2+m_3) g l_2 \cos\varphi_2 - m_3 g l_3 \cos\varphi_3
Entsprechend sind die Bewegungsgleichungen:
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): m_{3}l_{3}\ddot{\varphi}_{3}\cos(\varphi_{1}-\varphi_{3})+ (m_2+m_{3})l_{2}\ddot{\varphi}_{2}\cos(\varphi_{1}-\varphi_{2}) + (m_1+m_2+m_{3})l_{1}\ddot{\varphi}_{1} + m_3 l_3 \dot{\varphi}_{3}^2 \sin(\varphi_{1}-\varphi_{3})
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): + (m_2+m_3) l_2 \dot{\varphi}_{2}^2 \sin(\varphi_{1}-\varphi_{2}) + (m_1+m_2+m_3) g \sin\varphi_1=0
und
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): m_{3}l_{3}\ddot{\varphi}_{3}\cos(\varphi_{2}-\varphi_{3}) + (m_2+m_{3})l_{2}\ddot{\varphi}_{2}+ (m_2+m_{3})l_{1}\ddot{\varphi}_{1} \cos(\varphi_{1}-\varphi_{2}) - (m_2+m_3) l_1 \dot{\varphi}_{1}^2 \sin(\varphi_{1}-\varphi_{2})
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): + m_3 l_3 \dot{\varphi}_{3}^2 \sin(\varphi_{2}-\varphi_{3}) + (m_2+m_3) g \sin\varphi_2=0
und
$ l_{3}{\ddot {\varphi }}_{3}+l_{2}{\ddot {\varphi }}_{2}\cos(\varphi _{2}-\varphi _{3})+l_{1}{\ddot {\varphi }}_{1}\cos(\varphi _{1}-\varphi _{3})-l_{2}{\dot {\varphi }}_{2}^{2}\sin(\varphi _{2}-\varphi _{3})-l_{1}{\dot {\varphi }}_{1}^{2}\sin(\varphi _{1}-\varphi _{3})+g\sin \varphi _{3}=0 $
Simulation der Trajektorien
- Mathematisches pendel.gif
Simulation: $ n=1 $
- Mathematisches doppelpendel.gif
Simulation: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): n=2
- Mathematisches dreifachpendel.gif
Simulation: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): n=3
Literatur
- Georg Hamel: Theoretische Mechanik. Springer, Berlin 1967. Berichtiger Reprint 1978, ISBN 3-540-03816-7
- Friedhelm Kuypers: Klassische Mechanik. 5. Auflage. VCH, Weinheim 1997, ISBN 3-527-29269-1
- Landau / Lifšic: Lehrbuch der theoretischen Physik. Band 1: Mechanik. 14. Auflage. Deutsch, Thun 1997, ISBN 3-8171-1326-9
Quellen
- L. D. Landau, E. M. Lifschitz: Volume 1 of Course of Theoretical Physics. 3rd Edition 1976, ISBN 0-7506-2896-0, §5, S. 11 f. (Englisch)
- Herleitung der Differentialgleichungen zur Beschreibung des Doppelpendels (Englisch)
Siehe auch
- Doppelpendel
- Magnetisches Pendel
- KAM-Theorem