Histamin-H1-Rezeptor

Histamin-H1-Rezeptor

Histamin-H1-Rezeptor

Strukturmodel des Histamin-H1-Rezeptors in Komplex mit Doxepin
Vorhandene Strukturdaten: PDB 3RZE
Eigenschaften des menschlichen Proteins
Masse/Länge Primärstruktur 487 AS; 55,8 kDa
Sekundär- bis Quartärstruktur 7TM
Bezeichner
Gen-Name HRH1
Externe IDs OMIM: 600167 UniProtP35367
Vorkommen
Übergeordnetes Taxon Wirbeltiere

Der Histamin-H1-Rezeptor (kurz H1-Rezeptor) ist ein Protein aus der Familie der Histamin-Rezeptoren, das durch das körpereigene Gewebshormon Histamin aktiviert werden kann. Im menschlichen Körper ist der H1-Rezeptor weit verbreitet und kommt beispielsweise in der Zellmembran von Zellen des Immunsystems, wie beispielsweise Mastzellen, der glatten Muskulatur und in Nervenzellen vor. Zu den wichtigsten Funktionen dieses Rezeptors gehören die Vermittlung der allergieartigen Wirkungen des Histamins und Neurotransmission. Es handelt sich um einen G-Protein-gekoppelten Rezeptor.

Biochemie

Genetik

Der H1-Rezeptor des Menschen wurde erstmals im Jahr 1995 kloniert[1]. Er wird durch ein Gen auf dem Chromosom 3 auf dem Genlocus 3q25 codiert. Die codierende DNA-Sequenz ist intronfrei.

Proteinstruktur

Das H1-Rezeptorprotein des Menschen besteht aus 487 Aminosäuren. Wie für viele andere Rezeptoren aus der Familie der G-Protein-gekoppelten Rezeptoren, wird für den H1-Rezeptor eine Struktur mit sieben helikalen Transmembrandomänen angenommen (heptahelikaler Rezeptor). Das Rezeptorprotein verfügt in Analogie zu den muskarinischen Acetylcholinrezeptoren über eine ausgeprägte zweite intrazelluläre Schleife, aber nur über einen kurzen intrazellulären C-terminalen Rest.

Signaltransduktion

Auf molekularer Ebene führt eine Stimulation von H1-Rezeptoren zu einer Aktivierung von Gq/11-Proteinen und einer Aktivierung der Phospholipase C verbunden mit einer Freisetzung von Ca2+ aus intrazellulären Speichern. Infolgedessen werden verschiedene intrazelluläre Signaltransduktionswege aktiviert, die zu einer Kontraktion glattmuskulärer Zellen oder zu einer Freisetzung von Entzündungsmediatoren, wie beispielsweise Interleukine führen. Das freigesetzte Calcium triggert unter anderem die Freisetzung von Stickstoffmonoxid aus dem Gefäßendothel, das zu einer Vasodilatation z.B. im Zuge einer allergischen Reaktion führt.

Funktion

Eine Aktivierung von H1-Rezeptoren ist hauptverantwortlich für die beobachteten allergieartigen Wirkungen des Histamins. Dazu zählen Juckreiz und Schmerz, Kontraktion der glatten Muskulatur in Bronchien und großen Blutgefäßen (Durchmesser von mehr als 80 µm) sowie Erweiterung kleinerer Blutgefäße verbunden mit Nesselsucht und Hautrötung. Im Zentralnervensystem ist Histamin über eine Aktivierung von H1-Rezeptoren an der Auslösung des Erbrechens sowie der Regulation des Schlaf-Wach-Rhythmus beteiligt und besitzt eine antidepressive und antikonvulsive Wirkung. H1-Rezeptoren sind auch an der Regulation der Ausschüttung von Hormonen, wie z. B. Adrenalin, beteiligt.

Pharmakologie

Antagonisten des Histamins am H1-Rezeptor (H1-Antihistaminika) werden therapeutisch zur Behandlung allergischer Beschwerden, der Schlafstörung und des Erbrechens eingesetzt. Gemessen an der Anzahl therapeutisch genutzter Substanzen ist der H1-Rezeptor gleichauf mit dem Glucocorticoidrezeptor das pharmakologisch wichtigste Zielmolekül (Target).[2] Allgemein können heute drei Generationen von H1-Antihistaminika unterschieden werden:

  • H1-Antihistaminika der 1. Generation (z. B. Diphenhydramin und Doxylamin) werden aufgrund ihrer sedativen Wirkung heute kaum noch zur Behandlung von allergischen Beschwerden verwendet. Sie finden vielmehr zur Behandlung von Schlafstörungen sowie Übelkeit und Erbrechen Verwendung.
  • H1-Antihistaminika der 3. Generation (wie z. B. Levocetirizin, Desloratadin und Fexofenadin) stellen eine Weiterentwicklung der H1-Antihistaminika der 2. Generation dar. Häufig wurden sie aus strategischen Gründen entwickelt, ein therapeutischer Gewinn gegenüber ihren Vorgängern fehlt meist.

Im Gegensatz zu den H1-Rezeptorantagonisten besitzen die H1-Rezeptoragonisten nur eine geringe therapeutische Bedeutung. Einzig Betahistin, ein Histamin-Analogon mit H1-rezeptoragonistischer und H3-rezeptorantagonistischer Wirkung, wird in der Behandlung von Schwindelzuständen eingesetzt. Selektive H1-Rezeptoragonisten, wie z. B. Histaprodifen, finden keine therapeutische Anwendung.

Einzelnachweise

  1. Fukui H, Fujimoto K, Mizuguchi H, et al: Molecular cloning of the human histamine H1 receptor gene. In: Biochem. Biophys. Res. Commun.. 201, Nr. 2, Juni 1994, S. 894–901. doi:10.1006/bbrc.1994.1786. PMID 8003029.
  2. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there?. In: Nat Rev Drug Discov. 5, Nr. 12, Dezember 2006, S. 993–6. doi:10.1038/nrd2199. PMID 17139284.

Weblinks

Diese Artikel könnten dir auch gefallen

Die News der letzten 7 Tage

21.06.2021
Neurobiologie
Wählerische Nervenzellen
Der visuelle Thalamus ist klassischerweise dafür bekannt, die von der Netzhaut kommenden visuellen Reize an die Großhirnrinde weiterzuleiten.
21.06.2021
Botanik | Genetik | Klimawandel
Gene für Dürreresistenz in Buchen: Hitzesommer überleben oder austrocknen?
Forscherinnen identifizieren Gene für Dürreresistenz in Buchen, aber nicht jeder Baum hat das genetische Rüstzeug für einen Klimawandel.
21.06.2021
Anthropologie | Neurobiologie
Mimik-Erkennung: Warum das Gehirn dem Computer (noch) überlegen ist
Die Corona-Maskenpflicht macht uns derzeit bewusst: Mimik ist eines unserer wichtigsten Kommunikationssignale.
20.06.2021
Physiologie | Paläontologie
Kleiner Elefant hörte tiefe Töne
Der ausgestorbene Zwergelefant Palaeoloxodon tiliensis von der griechischen Insel Tilos besaß offenbar ein ähnliches Hörspektrum wie seine großen, heute lebenden Verwandten.
20.06.2021
Biodiversität | Insektenkunde
In Deutschland Gewinner und Verlierer: Libellen
In den letzten 35 Jahres hat sich die Verteilung der Libellenarten in Deutschland stark verändert.
18.06.2021
Ethologie | Insektenkunde
Die komplexe Organisation einer Ameisenkolonie
Eine vom Schweizerischen Nationalfonds unterstützte Studie über räuberische Ameisen erklärt, wie kleine Unterschiede zwischen Einzeltieren die kollektive Organisation der Kolonie verändern.
18.06.2021
Ethologie | Primatologie
Schimpansen-Waisen erholen sich vom Verlust der Mutter
Chronischer Stress könnte ein Grund dafür sein, warum manche Tierwaisen eine kürzere Lebenserwartung haben und weniger Nachkommen bekommen.
18.06.2021
Ökologie | Insektenkunde
Stickstoffüberschuss gefährdet Schmetterlinge
Stickstoff aus Landwirtschaft, Verkehrsabgasen und Industrie bringt Schmetterlinge in der Schweiz in Bedrängnis.
18.06.2021
Insektenkunde | Entwicklungsbiologie
Steinfliegen: Jugend beeinflusst Erwachsenenleben
Die Metamorphose führt bei Insekten meist zu völlig verschieden aussehenden Larven- und Erwachsenenstadien: Schmetterlinge unterscheiden sich etwa drastisch von ihren Jungstadien, den Raupen.
18.06.2021
Ökologie | Vogelkunde
Dramatische Veränderung der Brutvogelgemeinschaft
Im Bonner Stadtteil Dottendorf hat die Zahl der Brutvogelarten in den vergangenen 50 Jahren deutlich abgenommen.
16.06.2021
Genetik
Genome aus ihren Puzzleteilen wieder zusammensetzen
Ein Forscherteam des Friedrich-Miescher-Labors für biologische Arbeitsgruppen hat eine neue Methode zur DNA-Sequenzierung entwickelt, die schnelles und effizientes Aufspüren von genetischer Information ermöglicht.
16.06.2021
Ökologie | Land-, Forst- und Viehwirtschaft
Kleingewässer in Agrarlandschaften stark mit Pestiziden belastet
Pestizide sichern die Erträge in der Landwirtschaft, indem sie schädliche Insekten, Pilze und Unkräuter bekämpfen.