Blarina-Toxin

Blarina-Toxin (Blarina brevicauda)

Masse/Länge Primärstruktur 253 Aminosäuren
Präkursor (282 aa)
Bezeichner
Externe IDs UniProtQ76B45
Enzymklassifikation
EC, Kategorie 3.4.21.-  Serinproteinase
MEROPS S01.409
Reaktionsart Spaltung von Peptidbindungen
Substrat Kininogen
Produkte Kallidin

Blarina-Toxin, Kurzbezeichnung BLTX, ist ein tierisches Gift. Es ist bei Vertretern der Amerikanischen Kurzschwanzspitzmäuse, nach deren Gattungsnamen Blarina es benannt ist, im Speichel und in den Unterkieferspeicheldrüsen zu finden. Darüber hinaus kommt ein strukturell, biochemisch und funktional nahezu identisches Gift, das als Gilatoxin bezeichnet wird, bei Skorpion-Krustenechsen in den Unterlippendrüsen vor. Damit zählt BLTX nicht nur zu den wenigen in Säugetieren vorkommenden Giften, sondern ist darüber hinaus aus phylogenetischer Sicht unabhängig voneinander in zwei verschiedenen Tiergruppen entstanden.[1] Das Gift, das als Serinprotease fungiert und dem körpereigenen Enzym Kallikrein ähnelt, dient Kurzschwanzspitzmäusen zur Lähmung und Tötung von Beutetieren. Beim Menschen ruft ein Biss dieser Tiere im Allgemeinen keine schwerwiegenden Symptome hervor.

Eigenschaften

Blarina-Toxin wurde erstmals 1942 beschrieben und im Speichel und der Unterkieferspeicheldrüse der Nördlichen Kurzschwanzspitzmaus Blarina brevicauda nachgewiesen.[2] Die molare Masse der aus 253 Aminosäuren bestehenden aktiven Form, die aus einer Vorform aus 282 Aminosäuren gebildet wird, liegt bei 28 Kilodalton.[3] Aus funktioneller Sicht handelt es sich um eine Serinprotease,[3] die Kininogene in Kinine umwandelt und sich evolutionär wahrscheinlich aus der KLK1-Variante[4] des körpereigenen Enzyms Kallikrein ableitet.[1] Es ist unter anderem durch Aprotinin hemmbar, die proteolytische Aktivität ist essentiell für die Giftwirkung.[3] Das pH-Optimum liegt bei 9,0.[3]

Die strukturell, biochemisch und funktional nahezu identische und auch als Gilatoxin bezeichnete Kallikrein-artige Komponente des Gifts der Skorpion-Krustenechse (Heloderma horridum), die im Vergleich zur Form aus Blarina brevicauda eine Molekülmasse von rund 33 Kilodalton hat, besteht aus 245 Aminosäuren.[5][6]

Wirkung

Blarina brevicauda

Die letale Dosis (LD50) von Blarina-Toxin, das vorwiegend auf das Zentralnervensystem wirkt, beträgt rund ein Milligramm pro Kilogramm Körpergewicht bei intraperitonealer Injektion in Mäusen[3] und etwa 0,1 bis 0,2 Milligramm pro Kilogramm Körpergewicht bei intravenöser Injektion in Kaninchen.[2] Zu den Wirkungen zählen je nach Giftmenge allgemeines Unwohlsein, brennende Schmerzen, Schwellungen und Rötungen an der Bissstelle, Störungen der Atmung, ein Abfall des Blutdrucks durch Weitstellung der Blutgefäße sowie Krämpfe und Paralyse.[3] Der Tod tritt durch Lähmung des Atemzentrums ein. Die Toxizität des Gifts bei einem Biss ist ausreichend, um kleinere Wirbeltiere wie andere Spitzmäuse, Mäuse und Wühlmäuse, Salamander und Frösche[7] sowie Singvögel zu töten,[8] die zu den Beutetieren der Amerikanischen Kurzschwanzspitzmäuse zählen.[9] In den meisten Fällen lähmt es die Beute, zu der außerdem auch Schnecken und Regenwürmer gehören.[10] Diese überleben bis zu fünf Tage in einem komaähnlichen Zustand, wodurch sich Kurzschwanzspitzmäuse Vorräte aus unverdorbener tierischer Nahrung anlegen können.[10] Die Wirkung eines Bisses der Kurzschwanzspitzmäuse beim Menschen beschränkt sich auf lokale Symptome an der Bissstelle[9] und hat aus diesem Grund keine nennenswerte klinische Relevanz.[11]

Das mit Blarina-Toxin nahezu identische Gilatoxin im Gift der Skorpion-Krustenechse hat in gereinigter Form fast die gleiche Letalität wie das vollständige Gift der Echse, in dem es nur einen Anteil von rund drei bis fünf Prozent ausmacht.[12] Das Gift der Skorpion-Krustenechse enthält neben Gilatoxin weitere Bestandteile wie eine Phospholipase A₂, ein Analogon des Vasoaktiven intestinalen Peptids (VIP) sowie eine Hyaluronidaseaktivität, welche die Aufnahme und Verteilung des Gifts im Gewebe verstärkt. Beim Biss einer Skorpion-Krustenechse können beim Menschen, im Vergleich zum Blarina-Toxin der Kurzschwanzspitzmäuse, aufgrund der komplexeren Zusammensetzung sowie wegen der größeren Giftmenge und der direkten Abgabe des Gifts über entsprechende Zähne in die Bisswunde weitere und schwerwiegendere Symptome auftreten.[12] Zu diesen zählen unter anderem allgemeine Schwäche, Übelkeit und Erbrechen sowie vermehrtes Schwitzen und Fieber für die Dauer von mehreren Stunden sowie in seltenen Fällen ein starker Blutdruckabfall und ein Schock.[12] Todesfälle nach Heloderma-Bissen sind in älteren Veröffentlichungen beschrieben, jedoch wahrscheinlich auf ungünstige Umstände wie einen schlechten Allgemeinzustand der Betroffenen zurückzuführen.[12]

Einzelnachweise

  1. 1,0 1,1 Yael T. Aminetzach, John R. Srouji, Chung Yin Kong and Hopi E. Hoekstra: Convergent Evolution of Novel Protein Function in Shrew and Lizard Venom. In: Current Biology. Online veröffentlicht am 29. Oktober 2009. Elsevier, doi:10.1016/j.cub.2009.09.022, Preprint verfügbar bei http://www.oeb.harvard.edu/faculty/hoekstra/PDFs/Aminetzach2009CB.pdf
  2. 2,0 2,1 Sydney Ellis, Otto Krayer: Properties of a Toxin From the Salivary Gland of The Shrew, Blarina brevicauda. In: Journal of Pharmacology and Experimental Therapeutics. 114(2)/1955. American Society for Pharmacology and Experimental Therapeutics, S. 127–137, ISSN 0022-3565
  3. 3,0 3,1 3,2 3,3 3,4 3,5 Masaki Kita, Yasuo Nakamura, Yuushi Okumura, Satoshi D. Ohdachi, Yuichi Oba, Michiyasu Yoshikuni, Hiroshi Kido, Daisuke Uemura: Blarina Toxin, a Mammalian Lethal Venom From The Short-tailed Shrew Blarina brevicauda: Isolation and Characterization. In: Proceedings of the National Academy of Sciences. 101(20)/2004. National Academy of Sciences, S. 7542–7547, ISSN 0027-8424
  4. Åke Lundwall, Maria Brattsand: Kallikrein-Related Peptidases. In: Cellular and Molecular Life Sciences. 65(13)/2008. Birkhäuser Basel, S. 2019–2038, ISSN 1420-682X
  5. Robert A. Hendon, Anthony T. Tu: Biochemical Characterization of The Lizard Toxin Gilatoxin. In: Biochemistry. 20(12)/1981. American Chemical Society, S. 3517–3522, ISSN 0006-2960
  6. Pongsak Utaisincharoen, Stephen P. Mackessy, Roger A. Miller, and Anthony T. Tu: Complete Primary Structure and Biochemical Properties of Gilatoxin, a Serine Protease with Kallikrein-like and Angiotensin-degrading Activities. In: Journal of Biological Chemistry. 268(29)/1993. American Society for Biochemistry and Molecular Biology, S. 21975–21983, ISSN 0021-9258
  7. Joseph F. Merritt: Advances in the biology of shrews II. Special publication of the International Society of Shrew Biologists, Lulu.com, 2005, ISBN 9781411678187, S. 361–366
  8. Northern Short-Tailed Shrew (Blarina brevicauda). In: Charles Fergus: Wildlife of Pennsylvania and the Northeast. Stackpole Books, Mechanicsburg 2000, ISBN 0-81-172899-4, S. 16/17
  9. 9,0 9,1 Northern Short-Tailed Shrew (Blarina brevicauda). In: Allen Kurta, William Henry Burt: Mammals of the Great Lakes Region. University of Michigan Press, Ann Arbor 1995, ISBN 0-47-206497-5, S. 46–49
  10. 10,0 10,1 Stephen B. Vander Wall: Animal Storage. In: Food Hoarding in Animals. University of Chicago Press, Chicago 1990, ISBN 0-22-684735-7, S. 86–88
  11. Michael R. Dobbs: Clinical Neurotoxicology: Syndromes, Substances, Environments. Saunders/ Elsevier, Philadelphia 2009, ISBN 0-32-305260-6, S. 475/476
  12. 12,0 12,1 12,2 12,3 Clinical Toxicology of Helodermatidae Lizard Bites. In: Jürg Meier, Julian White: Handbook of Clinical Toxicology of Animal Venoms and Poisons. CRC Press, Boca Raton 1995, ISBN 0-84-934489-1, S. 360–366

Literatur

  • Masaki Kita, Yasuo Nakamura, Yuushi Okumura, Satoshi D. Ohdachi, Yuichi Oba, Michiyasu Yoshikuni, Hiroshi Kido, Daisuke Uemura: Blarina Toxin, a Mammalian Lethal Venom From The Short-tailed Shrew Blarina brevicauda: Isolation and Characterization. In: Proceedings of the National Academy of Sciences. 101(20)/2004. National Academy of Sciences, S. 7542–7547, ISSN 0027-8424
  • Dietland Müller-Schwarze: Chemical Ecology of Vertebrates. Cambridge University Press, Cambridge 2006, ISBN 0-52-136377-2; Kapitel 10: Allomones I: Chemical Defense by Animals. Abschnitt 10.5: Mammals. S. 262–264

Diese Artikel könnten dir auch gefallen

Die News der letzten 7 Tage

08.04.2021
Mikrobiologie | Zytologie | Taxonomie
Cyanobakterien mögen es gesellig
Forschende vom Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH haben drei verschiedene Cyanobakterien und ihre assoziierten Mikroorganismen untersucht.
08.04.2021
Neobiota | Land-, Forst- und Viehwirtschaft
Invasive aquatische Arten verursachen Schäden in Milliardenhöhe
Wenn sich Pflanzen oder Tiere aufgrund menschlicher Aktivitäten in Ökosystemen außerhalb ihres natürlichen Verbreitungsgebietes etablieren, können sie erhebliche wirtschaftliche Schäden verursachen.
08.04.2021
Anthropologie | Genetik | Paläontologie
Bisher ältestes Genom moderner Menschen rekonstruiert
Team zweier Max-Planck-Institute und der Universität Tübingen datiert fossilen Schädel aus Tschechien anhand von eingekreuzten Neandertalergenen. Alter von mehr als 45.000 Jahren bestimmt.
07.04.2021
Mikrobiologie | Evolution
Auf der Suche nach dem ersten Bakterium
Wie sah der Ahnherr aller Bakterien aus, wo lebte er und wie ernährte er sich? Auf diese Fragen fand nun ein Forschungsteam Antworten.
06.04.2021
Ökologie | Paläontologie | Meeresbiologie
Tigerhai-Angriff vor 14.5 Millionen Jahren endete tödlich für steirische Seekuh
Forschende des Naturhistorischen Museums Wien identifizierten ein einzigartiges fossiles Skelett einer Seekuh.
06.04.2021
Physiologie | Paläontologie | Meeresbiologie
Hautnah: Wie Säuger das Wasser zurückeroberten
Flusspferde und Wale sind nahe Verwandte, aber ihre „aquatische“ Haut stammt nicht von einem gemeinsamen Vorfahren.
06.04.2021
Genetik | Ethologie | Insektenkunde
Ameisen reagieren auf soziale Isolation
Ameisen reagieren auf soziale Isolation ähnlich wie Menschen oder andere soziale Säugetiere.
06.04.2021
Anthropologie | Paläontologie | Video
Menschheitsgeschichte: Früher Homo sapiens im Outback Afrikas
Ein internationales Forschungsteam liefert erstmals mehr als 100.000 Jahre alte Belege für moderne Menschen in der Kalahari-Wüste im Landesinneren Afrikas.
06.04.2021
Klimawandel | Land-, Forst- und Viehwirtschaft
Milch von weidenden Kühen besser für das Klima als Milch von Kühen in Stallhaltung?
Weidebasierte Milchproduktion kann hohe Milchleistung mit sehr niedrigen Methanemissionen verbinden.
06.04.2021
Meeresbiologie
Effektive Beutejagd in der Tiefsee
Ein internationales Forscherteam hat untersucht, warum Delfine und Wale rekordverdächtige Tauchgänge in mehrere Kilometer Tiefe durchführen.
05.04.2021
Ökologie | Meeresbiologie
Welche Rolle spielt das Grundwasser für die Küstenmeere?
Eine neue Studie beleuchtet die große Bedeutung von Nährstoffeinträgen durch Grundwasser in die Küstenozeane.