Tarnung (Biologie)
- Seiten mit Skriptfehlern
- Wikipedia:Lesenswert
- Wikipedia:Vorlagenfehler/Bewertungsbaustein
- Tarnung
- Kommunikation (Biologie)
- Evolution
- Ökologie
Tarnung, in der Verhaltensbiologie auch als Krypsis bezeichnet, ist bei Tieren der Vorgang oder Zustand, der darauf abzielt, irreführende Signale an ein anderes Lebewesen zu senden. Es ist der simpelste und effektivste Mechanismus zur Reduktion des Prädationsrisikos. Diese Irreführung kann sich gegen alle Sinnesorgane richten, also das Auge täuschen, das Gehör, den Geruchssinn. Als Sonderform der Tarnung können auch bestimmte Mimikry-Varianten aufgefasst werden, bei denen zum Beispiel wohlschmeckende oder wehrlose Arten äußere Merkmale übelschmeckender oder wehrhafter Arten kopieren und sich so gegenüber potenziellen Fressfeinden tarnen.
Wird das visuelle (das äußerlich sichtbare) Erscheinungsbild eines Tieres zur Tarnung genutzt, bezeichnet der Fachmann dieses Aussehen als Tarntracht. Geruch und Laute werden gleichfalls zur Tarnung benutzt, dies ist jedoch bis heute kaum erforscht worden.
Formen der Tarnung
Der Austausch von Signalen ist eine wesentliche Voraussetzung für jegliche Kommunikation und erfordert mindestens einen Sender und einen Empfänger von Signalen. Die Tarnung bei Tieren kann daher beschrieben werden als eine im Verlauf der Stammesgeschichte erworbene Befähigung, zumindest unter bestimmten Umständen nur solche Signale zu senden, die sich in möglichst geringem Maße von den Gegebenheiten unterscheiden, die das Individuum umgeben. Die Tarnung kann sowohl dem Verbergen vor Fressfeinden dienen als auch dem Verbergen vor potenzieller Beute (Angriffstarnung).
Somatolyse
Eine häufige – und gelegentlich vom Beobachter als geradezu kontraproduktiv empfundene – Form der Tarnung ist die Somatolyse. Die Anpassung an die Struktur und Färbung der Umgebung erfolgt dabei meistens durch Musterung oder Tarnfarben.
Somatolyse (wörtlich: Auflösung des Körpers) beschreibt das Verschmelzen eines Lebewesen mit seiner natürlichen Umgebung durch eine besonders gemusterte und manchmal auch farblich mit der Umgebung abgestimmte Tracht – das Tier wird gewissermaßen unsichtbar. Diese Form der Tarnung dient meist dazu, natürlichen Feinden zu entgehen oder auch, wie zum Beispiel beim Löwen (einem Jäger) und anderen Großkatzen, von seiner potenziellen Beute so spät wie möglich entdeckt zu werden.
Umgekehrt ist eine jagende Löwin selbst aus nächster Nähe aufgrund ihres braunen Fells kaum von den in Trockenperioden ebenfalls braunen Steppengräsern zu unterscheiden. Ähnliches gilt für viele andere Katzen, so für den Gepard und für den Leopard.
Die Musterung und der Farbton können bei der Somatolyse, für sich allein betrachtet, sehr auffällig wirken. Das erstaunlichste Beispiel hierfür ist das schwarz-weiß gestreifte Zebra. In der Dauerausstellung des Berliner Museums für Naturkunde wird das Entstehen der Fellfärbung wie folgt beschrieben:
- „Der Lebensraum der Tsetse-Fliege ist der Tropengürtel Afrikas, südlich der Sahara. Bei der Ausbreitung auf dem afrikanischen Kontinent durchquerten die aus Asien stammenden, dunkel gefärbten Wildpferde dieses Gebiet. Ein Streifenmuster war hier ein selektiver Vorteil, denn die Komplexaugen der vor allem nachtaktiven Fliege konnten die Silhouette der Zebras in der Dunkelheit nicht auflösen. Die Zebra-Streifen dienten der Tarnung vor dem Krankheitsüberträger. Das vor 100 Jahren ausgerottete Quagga hingegen war ein Zebra, dessen Streifenmuster nur auf den Schwanzansatz, den Kopf und den Hals beschränkt war, ohne dass dadurch ein Nachteil entstand. Seine – gestreiften – Vorfahren hatten den Lebensraum der Tsetse-Fliege durchschritten und ihn im Süden wieder verlassen. In ihrem neuen Lebensraum, der Kapprovinz, bot das Streifenmuster keinen selektiven Vorteil mehr und konnte wie beim Quagga aufgegeben werden.“[1]
Bestätigt wurde diese Deutung 2012 in einer Studie schwedischer Forscher.[2] Zuvor war vermutet worden, dass sich − zum Beispiel aus dem Blickwinkel einer geduckt am Boden umher streifenden Löwin – die seitlich vertikalen, an Kopf und Hinterleib eher horizontalen Streifen einer dicht an einander gedrängt stehenden Herde visuell mit den hochgewachsenen Gräsern und dem Flirren der tagsüber oft erhitzten, bodennahen Luft vereinen und sich so die Konturen des einzelnen Tieres auflösen, was dem Beutegreifer das Fixieren eines bestimmten Tieres erschweren.
Ein bekanntes Beispiel für farblich getarnte Tiere ist ferner der (weiße) Eisbär, der auf der Jagd nach jungen (weißen) Sattelrobben gegenüber potenzieller Beute hervorragend getarnt ist, wie umgekehrt die Robbenbabys in Schnee und Eis aus größerer Entfernung nicht vom Untergrund zu unterscheiden und somit vor allzu raschem Entdecktwerden geschützt sind. Ähnliches gilt für bestimmte Tierläuse aus der Gruppe der Ischnocera: US-Forscher berichteten im Jahr 2010, dass im Gefieder von weiß gefiederten Vögeln eher weißhäutige Läuse, im Gefieder von dunkel gefiederten Vögeln eher dunkelhäutige Läuse nachweisbar sind; offenbar war es das Pickverhalten der sich reinigenden Wirte, das einen Selektionsdruck hin zur Vorherrschaft einer bestimmten Farbvariante bei den Ektoparasiten verursachte.[3] Auch die Schnee-Eule wirkt nur in der Voliere eines Tierparks aufgrund ihres strahlend weißen, mit braunen Flecken gesprenkelten Gefieders recht auffällig. In leicht mit Schnee überdecktem Laub hingegen sitzend, ist sie kaum vor der Umgebung zu unterscheiden.
Eine Forschergruppe der Universität Freiburg berichtete Mitte 2006 über ein Experiment mit teils auffällig gefärbten Schmetterlings-Attrappen, die sie – stets mit toten Mehlwürmern bestückt – an unterschiedlichen Baumstämmen platziert hatten.[4] Nach einer bestimmten Zeit wurde jeweils kontrolliert, ob der Mehlwurm verschwunden war, was als ‚Falter gefressen‘ bewertet wurde. Ergebnis: Am längsten ‚überlebten‘ jene Falter-Attrappen, die an den Flügelrändern gemustert waren; deutlich häufiger verschwanden die Mehlwürmer aus den im Flügelinneren gemusterten Attrappen. Dies galt selbst für blau-rosa gefärbte Attrappen auf einer moosbewachsenen Eiche. Aus ihren Beobachtungen schlossen die Forscher, dass die Auflösung der Körperkonturen durch gefleckte Flügelränder dazu führt, dass die angeborenen Auslösemechanismen der potenziellen Fressfeinde den so getarnten Schmetterling nicht mehr als ‚Beute‘ detektieren, und zwar unabhängig vom Untergrund. Durch Fleckung im Flügelinneren könne sich ein Schmetterling hingegen nur in Abhängigkeit vom passend gefärbten Untergrund tarnen.
- In Strandnähe kann man häufig Fische beobachten, deren Grundfärbung silbrig erscheint, die aber an den Seiten markante, dunkle Streifen – vom Rücken zum Bauch – aufweisen. Bei Sonnenschein kann man im Flachwasser auch als schnorchelnder Laie bemerken, dass die sich am Boden abzeichnenden Schattenwürfe der gewellten Wasseroberfläche vergleichbare Streifenmuster erzeugen. Von der Seite oder von schräg oben betrachtet sind solche Fische schon aus geringer Entfernung kaum von ihrer Umgebung zu unterscheiden.
- Viele auffällig rot gefärbte Fische, die man zum Beispiel in Korallenriffen antreffen kann, haben diese auf den ersten Blick auffällige Färbung entwickelt, weil sie so nachts vor Raubfischen besser geschützt sind: Das Rotlicht wird vom Wasser am stärksten weggefiltert (daher erscheint Wasser in der Tiefe immer bläulich), so dass diese Fische im Dunkeln blau-grau erscheinen.
- Manche Quallen und Garnelen sind durchscheinend wie Wasser.
- Nicht minder bekannt sind die grün wie ein Blatt gefärbten Raupen mancher Schmetterlinge.
- Zu den besonders gut getarnten Vögeln zählen die Rohrdommeln. Ihr Rückengefieder ist überwiegend braun, während ihre Vorderseite blass ist und punktierte, waagrechte Streifen aufweist. Dank dieser somatolytischen Färbung von Hals und Brust sind diese großen Vögeln selbst hinter wenigen Schilfhalmen nicht auszumachen. Die tarnende Färbung des Gefieders wird unterstützt durch Verhaltenskomponenten. Rohrdommeln bewegen sich extrem langsam durch das Schilf. Bei Gefahr wenden sie der Gefahrenquelle ihre Vorderseite zu, da diese besser getarnt ist. Ändert die Gefahrenquelle ihren Standpunkt, drehen sich die Rohrdommeln ebenfalls mit. Rohrdommeln nehmen bei Gefahr eine typische starre Körperhaltung ein, bei der der Hals lang gestreckt ist und der Schnabel zum Himmel weist. Diese Position können sie über Stunden einhalten. Bewegt der Wind das Schilf, wiegen sich die Rohrdommeln mit den Windbewegungen mit.[5]
- Viele Vögel haben gefleckte Eier: Solche Eier heben sich vom Nest weniger stark ab als ungefleckte Eier. Bei der Kohlmeise haben britische Forscher aber zusätzlich nachgewiesen, dass die rötlichen Sprenkel umso dichter sind, je dünner die Eischale ist. Offenbar wirken die rötlichen Farbpigmente wie eine Art zusätzlicher Klebstoff zwischen den Kalkspat-Kristallen der Schale.
- Die kleinen Regenpfeifer der Gattung Charadrius haben ein kontrastreich gefärbtes Gefieder mit einem weißen und oft auch einem schwarzen Halsband. Dadurch wird bei flüchtigem Hinsehen keine Vogelsilhouette erkannt, sondern Kopf und Rumpf werden als zwei verschiedene Gegenstände (Steine) wahrgenommen.
Zwitscherschrecke im hohen Junigras Eisbär mit Jungtieren Raupe unbekannter Art
Gegenschattierung
Im Unterschied zu vielen landlebenden Tieren, die in einem gleichsam zweidimensionalen Habitat leben, besiedeln Vögel und Fische ein dreidimensionales Habitat; ähnliches gilt für baumbewohnende Arten. Solche Tiere sind nicht nur potenziellen Angreifern von den Seiten und von oben ausgesetzt, sie können vielmehr auch von unten attackiert werden. Nun scheinen Sonne und Mond aber stets von oben, was eine einheitliche Tarnfärbung unzweckmäßig machen würde: Einheitlich dunkle Tiere wären von unten gegen den hellen Himmel gut sichtbar, einheitlich helle Tiere hingegen von oben gegen den dunklen Untergrund.
Die im Verlauf der Stammesgeschichte entstandene "Lösung" dieses Problems kann in jedem gut sortierten Fischgeschäft beobachtet werden: Viele Fische sind unterseits wesentlich heller gefärbt als oberseits. Diese Tarnungsformung, die auch als Konterschattierung oder Counter Shading bezeichnet wird, lässt sich auch für Vögel und Säugetiere nachweisen.
Eine ungewöhnliche Form der Gegenschattierung wurde bei dem Zwergtintenfisch Euprymna scolopes nachgewiesen: In seinem Mantel leben bioluminiszente Bakterien, die Licht erzeugen, so dass die Wirte – von unter ihnen schwimmenden potentiellen Fressfeinden – kaum noch wahrgenommen werden können. Dabei kann der Tintenfisch die „benötigte“ Lichtmenge aktiv regulieren, da sein Nervensystem die von den Bakterien erzeugte Helligkeit unmittelbar (also nicht allein über die Augen) wahrnehmen kann.[6]
Mimese
Nicht ganz sauber abgrenzbar gegen die Somatolyse ist die Mimese, die ebenfalls als eine Form der Tarnung angesehen werden kann. Während unter Somatolyse alle Fälle zu fassen sind, die auf ein Unsichtbar-Werden hinzielen, bleiben Tiere bei Mimese sehr wohl sichtbar, können jedoch aufgrund von Körperfärbung und Körperbau leicht mit Dingen ihrer Umgebung verwechselt werden. Hinsichtlich ihrer Körperfarbe ahmen Tiere bei der Mimese unter Umständen zwar die Umwelt ebenfalls nach, ihre Körperfarbe ist aber, anders als beim Farbwechsel, dauerhaft. Ein Beispiel ist der Brombeer-Blattspanner - er sieht aus wie Vogelkot.
Farbänderung
Die Fähigkeit zur Änderung der Körperfarbe, um sich der Umgebung so nah wie möglich anzugleichen, ist oft eine Schutzvorrichtung und wurde von den unterschiedlichsten Tierarten unabhängig voneinander entwickelt. Am bekanntesten und geradezu sprichwörtlich geworden für Personen, die es verstehen, sich jeder Umgebung anzupassen, sind die Chamäleons. Chamäleons bewegen sich zudem extrem langsam und schaukeln beim Vorwärtsbewegen vor und zurück, so dass sie im Geäst eines vom Wind bewegten Baumes kaum noch wahrgenommen werden können.
Der Schneehase, der u. a. in Nordeuropa und im Alpenraum lebt, wechselt im Jahresverlauf sein Fell: Im Sommer ist er grau-braun gefärbt, sein Winterfell ist hingegen weiß. Derart markant wechselt im Jahresverlauf auch das Hermelin seine Fellfarbe und das Alpenschneehuhn sein Gefieder.
Besonders eindrucksvoll ist der Farbwechsel auch bei vielen Kraken und Kalmaren, da sich die Tönung ihrer Haut nahezu von einem Augenblick zum nächsten ändern können. Der Langarm-Oktopus Macrotritopus defilippi tarnt sich am Meeresboden beispielsweise, indem er Färbung, Körperform und Bewegung des Pfauenbutts Bothus lunatus nachahmt.[7] Auch Sepia officinalis kann sich mit Hilfe gelber, orangeroter und dunkelbrauner Chromatophoren tarnen. Das Tier bewertet mit einem einzigen Rezeptortyp in seinem Auge die Helligkeitskontraste des Untergrunds (bei 492 nm Wellenlänge).[8] Es ist faszinierend, solche Tiere zum Beispiel in einem Aquarium zu beobachten (wo sie allerdings nur selten über längere Zeit erfolgreich gehalten werden können), wenn sie relativ dunkel aus einer Höhle gleiten und umgehend die helle, getüpfelte Farbe des angrenzenden Kiesbetts nachahmen. Diese Tiere besitzen zudem noch einen weiteren, wirksamen Schutzmechanismus, der ihnen nicht ohne Grund den Spitznamen Tintenfische eintrug: Von einem Fressfeind in die Enge getrieben, können sie eine dunkle Flüssigkeit hinter sich ins Wasser spritzen, die eine so dichte Wolke bildet, dass sie aufgrund dieser Tarnung reelle Chancen auf ein Entkommen haben.
- Die Veränderliche Krabbenspinne (Misumena vatia) sitzt häufig in den gelben Blüten von Sumpfdotterblumen, gelegentlich aber auch in den weißen Blüten der Echten Zaunwinde und lauert dort Insekten auf. Geschlechtsreife Weibchen können bei Bedarf einen gelben Farbstoff in ihre andernfalls weiße Haut einlagern und diesen auch wieder abbauen. Binnen Stunden können sie sich so umfärben und sind dann auch für das Auge des Menschen in einer entsprechend gefärbten Blüte kaum noch zu entdecken.
- Auch der zu den sogenannten Anglerfischen gehörende Fühlerfisch Antennarius commersoni verfügt über zwei bis vier Hauptfarbzustände, zwischen denen er teils binnen Sekunden, teils erst im Verlauf von Stunden wechseln kann. Diese Tiere sitzen häufig reglos und farblich angepasst am Boden, durch ihre warzig-beulige Körperoberfläche wie ein bewachsener Fels aussehend. Das einzig Auffällige ist eine Fischimitation, die an einer fädigen Ausstülpung der vordersten Rückenflosse hängt und Raubfische anlockt, die von diesem "lebenden Stein" dann selbst gefressen werden.
- Ein weiteres relativ bekanntes Beispiel sind Schollen und andere Plattfische wie der Steinbutt, die Farbe und Zeichnung ihrer Körperoberfläche entsprechend dem Untergrund, auf dem sie liegen, verändern können: Auf Kies sieht ihre Haut fleckiger aus als auf Sand. In ihre Haut sind diverse Farbzellen eingebettet (Chromatophoren), die sich ausdehnen (dann ist ihre Oberfläche groß und farbig), bei Bedarf aber auch zusammenziehen können (ihre Oberfläche ist dann minimal). Die angestrebte Musterung wird letztlich durch die Verteilung unterschiedlicher Farbzell-Typen auf der Haut bewirkt und vom Auge her kontrolliert.
- Die Larve (Raupe) des Tomatenschwärmers Manduca quinquemaculata (im englischen Sprachraum: Tomato hornworm) wird auch Tomatenraupe genannt und gilt als bedeutender Fraßschädling. Abhängig von der Umgebungstemperatur, kann sie ihre Farbe ändern: Wenn die Temperatur ständig über 28 Grad Celsius ist, sind die Raupen grün, bei niedrigeren Temperaturen sind die Raupen nahezu schwarz. Dies wird von Wissenschaftlern darauf zurückgeführt, dass bestimmte Hormone bei den jugendlichen Raupen in Abhängigkeit von der Außentemperatur aktiv sind; den biologischen Nutzen deuten sie so: Bei hohen Temperaturen überwiegt der Vorteil der Tarnung, bei niedrigeren Temperaturen (speziell im Herbst) überwiegt der Vorteil einer besseren Absorption von Sonnenwärme in den dann zumindest teilweise bereits vertrocknenden Pflanzen.[9]
- Mittelamerikanische Rindenwanzen (Aradidae) dunkeln bei Kontakt mit Wasser rasch nach: So behalten sie auch nach einem Gewitterregen die Farbe der Baumrinde, auf der sie sich aufhalten und die bei Regen ebenfalls deutlich dunkler ist als in trockenem Zustand.
Industriemelanismus
Unter Melanismus versteht man eine besonders ausgeprägte Einlagerung von dunklen Pigmenten (speziell von Melanin) in die Haut. Beim Birkenspanner trug sich Ende des 19. Jahrhunderts in englischen Industriegebieten ein derart drastischer Wandel des äußeren Erscheinungsbilds zu, dass sich hierfür der Begriff „Industriemelanismus“ einbürgerte.
Der Begriff unterstellt eine Veränderung der Häufigkeitsverteilung von hellen und dunklen Varianten des Schmetterlings als Folge der Luftverschmutzung durch Industriebetriebe. Diese Deutung ist heute jedoch umstritten.
Chemische Tarnung
Ein bekanntes Beispiel sind die Anemonenfische: Sie leben in Seeanemonen, ohne von dieser genesselt zu werden. Dies gelingt ihnen, indem sie von der Seeanemone bestimmte chemische Substanzen als Schutzstoffe übernehmen. Die Seeanemone kann den Fisch dann nicht mehr von ihren eigenen Tentakeln unterscheiden. Wenn man die auf den Schuppen der Fische befindlichen Schutzstoffe im Experiment beseitigt, werden auch die Anemonenfische genesselt.[10]
An der Universität Bayreuth wurde Anfang der 1990er Jahre ein Projekt zum Thema Chemische Tarnung finanziert, in dem es u.a. um die Steigerung des Fortpflanzungserfolgs durch Tarnung ging. Im Projektbericht hieß es hierzu, dass der Fortpflanzungserfolg von Blattlaus-Parasitoiden durch chemische Tarnung optimiert wird, wenn diese Parasiten Blattlauskolonien befallen, die von Ameisen belaufen werden; Ameisen nutzen die süßen Ausscheidungen der Blattläuse als Nahrungsquelle. Hierbei sei von Bedeutung, dass Ameisen räuberische und parasitische Blattlaus-Antagonisten aus der Blattlaus-Kolonie entfernen. Bestimmte Parasitoide sind jedoch durch chemische Tarnung an diese schützenden Tätigkeiten der Ameisen zugunsten der Blattläuse angepasst: Sie werden von den Ameisen also nicht entdeckt und können sich ungestört zu Lasten der Blattläuse entwickeln. [11]
Der Lungenenzian-Ameisenbläuling legt seine Eier vorzugsweise auf Blättern des Lungen-Enzians ab, wo sie sich zu Raupen fortentwickeln. Die Raupen werden von Roten Gartenameisen häufig in deren Kolonien getragen und wie die eigenen Jungtiere versorgt. Dänische Forscher berichteten Anfang 2008, diese Form des Sozialparasitismus beruhe darauf, dass die Schmetterlingsraupen durch chemische Substanzen in ihrer Haut vor einer Enttarnung geschützt werden. [12]
Andere Formen der chemischen Tarnung werden gegen Ameisen angewandt. Viele Wirbellose imitieren die Pheromone, mit denen Ameisen Straßen markieren. Die Ameisen folgen dieser falschen Straße und laufen damit direkt zu ihren Feinden. Einige Spinnentiere, Tausendfüßlerarten und Käfer imitieren speziell die Pheromone der Ameisenlarven. So können sie ungehindert in den Bau zu den Brutkammern eindringen und sich der Larven bedienen.
Akustische Tarnung
Lautäußerungen sind wesentlich schwieriger zu analysieren als visuelle Merkmale, da dies meist – zumal im Freiland – nur mit einem erheblichen technischen Aufwand gelingt. Daher sind eindeutige Befunde bisher rar.
Im Urwald des Amazonasbeckens wurde eine Langschwanzkatze beobachtet, die den Ruf junger Zweifarbentamarine imitierte, worauf erwachsene Zweifarbentamarine sich dem Ort dieser Rufe annäherten. Dies wiederum hatte zur Folge, dass die Wildkatze einen der sich nähernden Krallenaffen zu erbeuten versuchte.[13]
Der Kreuzenzian-Ameisenbläuling (Maculinea rebeli) legt seine Eier ausschließlich am Kreuz-Enzian ab. Wenn die aus den Eiern hervorgegangenen Raupen sich am Enzian fettgefressen haben, lassen sie sich zu Boden fallen und riechen dann plötzlich wie Königinnen der Ameisen-Art Myrmica schencki. Daraufhin werden sie von den Ameisen ins Ameisennest getragen und dort gefüttert. Diese chemische Tarnung war schon länger bekannt, britische Forscher haben 2008 zusätzlich die Lautäußerungen der Ameisen und der Raupen analysiert. Sie fanden heraus, dass Schmetterlingsraupen im Ameisennest Laute hervorbringen, die den Lauten der Ameisen-Königinnen sehr ähnlich sind. Wurden den Ameisen-Arbeiterinnen Lautäußerungen ihrer Königin sowie Laute der Raupen vorgespielt, so betrillerten sie in beiden Fällen gleichermaßen den Lautsprecher. [14]
Für Schmetterlinge aus der Familie der Bärenspinner wurde nachgewiesen, dass eine wohlschmeckende Art die Geräusche einer unschmackhaften Art nachahmt und daher beide Arten von Fledermäusen nicht gefressen werden.[15]
Der Totenkopfschwärmer kann mit seinem Rüssel einen zirpenden Ton erzeugen, der den Lauten einer Bienenkönigin ähnelt. Hierdurch vermag er sich Zugang zum Bienenstock zu verschaffen, in dem er mit Hilfe seines langen Rüssels dann den Honig aus Waben absaugen kann.
Jene Schwebfliegen, die wie Wespen aussehen, verursachen auch Fluggeräusche, die denen der Wespen ähneln. Dies liegt vor allem an einer extrem ähnlichen Frequenz der Flügelschläge: Bei Schwebfliegen wurden 147 Flügelschläge pro Sekunde nachgewiesen, bei Wespen 150.
Weitere Formen der Tarnung
- Manche Arten der Schmetterlinge tarnen ihren Kopf (und damit ihre potenzielle Fluchtrichtung) durch eine fühlerartige Verlängerung ihres Hinterleibs.
- Die asiatische Lackschildlaus Tachardia lacca besiedelt u.a. Bäume der Gattung Ficus. Sie bohren Blätter an, saugen Saft heraus und scheiden dann ein harziges Sekret aus, das ihren Körper bedeckt und sie so als scheinbaren Teil des Baumes tarnt.
Literatur
- Otto von Frisch: 1000 Tricks der Tarnung, Ravensburger Verlag, Esslingen 1979, ISBN 3-473-39564-1
- Klaus Lunau: Warnen, Tarnen, Täuschen. Mimikry und andere Überlebensstrategien in der Natur. Wissenschaftliche Buchgesellschaft, Darmstadt 2002, ISBN 3-534-14633-6
- Art Wolfe: Kunst der Tarnung. Frederking & Thaler Verlag, München 2005, ISBN 3-89405-656-8 (Originaltitel: Vanishing Act. Bulfinch Press, New York) – ein großformatiger, aussagekräftiger Bildband)
- Peter Kappeler: Verhaltensbiologie, Springer Verlag, Berlin 2006, ISBN 3-540-24056-X
Weblinks
Einzelnachweise
- ↑ Diese Deutung basiert auf Experimenten des britischen Entomologen Jeffrey Waage, vergl. J. K. Waage: How the zebra got its stripes: biting flies as selective agents in the evolution of zebra colouration. In: Journal of the Entomological Society of South Africa, Band 44, 1981, S. 351–358.
- ↑ Ádám Egri et al.: Polarotactic tabanids find striped patterns with brightness and/or polarization modulation least attractive: an advantage of zebra stripes. In: Journal of Experimental Biolpgy, Band 215, 2012, S. 736–745, doi:10.1242/jeb.065540
- ↑ Sarah E. Bush u. a.: Evolution of Cryptic Coloration in Ectoparasites. In: The American Naturalist, Band 176, S. 2010, S. 529–535, doi:10.1086/656269
- ↑ H. M. Schäfer und N. Stobbe: Disruptive coloration provides camouflage independent of background matching. In: Proceedings of the Royal Society B: Biological Sciences, Online-Veröffentlichung im Juli 2006
- ↑ Christopher McGowan: The Raptor and the Lamb – Predators and Prey in the Living World, Penguin Books, London 1998, ISBN 0-14-027264-X, S.100 und 101
- ↑ Deyan Tong et. al.: Evidence for light perception in a bioluminescent organ. PNAS, Onlineveröffentlichung am 9. Juni 2009; doi:10.1073/pnas.0904571106
- ↑ Roger T. Hanlon et al.: A „Mimic Octopus“ in the Atlantic: Flatfish Mimicry and Camouflage by Macrotritopus defilippi. Biological Bulletin, Band 218, 2010, S. 15–24 (Volltext)
- ↑ Roger Hanlon: Cephalopod dynamic camouflage. Current Biology, Band 17 (11), 2007, S. R400–R404, doi:10.1016/j.cub.2007.03.034 und [1]
- ↑ "Science Band 311 vom 3. Februar 2006, S. 591
- ↑ Dietrich Schlichter: Produktion oder Übernahme von Schutzstoffen als Ursache des Nesselschutzes von Anemonenfischen? In: Journal of Experimental Marine Biology and Ecology, Band 20, Nr. 1, 1975, S. 49–61, doi:10.1016/0022-0981(75)90101-X
- ↑ Siehe dazu u.a.: Forschungsbericht der Universität Bayreuth 1992-1994.
- ↑ David R. Nash u.a.: A Mosaic of Chemical Coevolution in a Large Blue Butterfly. Science 319 vom 4. Januar 2008, S. 88–90, doi:10.1126/science.1149180
- ↑ „Wildlife Conservation Society finds wild cat mimicking monkey calls“ eurekalert.org vom 8. Juli 2010 unter Verweis auf eine Studie von Fabiano de Oliveira Calleia, Fabio Rohe und Marcelo Gordo im Juniheft der Fachzeitschrift Neotropical Primates.
- ↑ Francesca Barbero, Jeremy A Thomas, Simona Bonelli, Emilio Balletto und Karsten Schönrogge: Queen Ants Make Distinctive Sounds That Are Mimicked by a Butterfly Social Parasite. Science, Band 323, 2009, S. 782–785; doi:10.1126/science.1163583
- ↑ Jesse R. Barber und William E. Conner: Acoustic mimicry in a predator–prey interaction. Proceedings of the National Academy of Sciences, Band 104, Nr. 22, 2007, S. 9331–9334, doi:10.1073/pnas.0703627104 (Volltext (PDF))