Fossil


(Weitergeleitet von Makrofossil)
Stromatolithe gehören zu den ältesten bekannten Fossilien. An diesen Stromatolithen aus den östlichen Anden von Bolivien (Maastrichtium, Kreide, etwa 70 Ma alt) ist der feinlagige Aufbau deutlich zu erkennen.
Spurenfossil (Bewegungspur) aus der Ediacara-Fauna
Bewegungsspuren von Trilobiten des Kambriums
Fossil des Schuppenbaums Lepidodendron aculeatum aus dem Karbon
Verkieseltes Holz aus dem Petrified-Forest-Nationalpark in Arizona, USA
Fossil eines Ichthyosauriers aus dem Posidonienschiefer Südwestdeutschlands
Libelle aus dem Jura
Nachbildung eines Fossils von Archaeopteryx („Berliner Exemplar“)
Der Körper dieses Ammoniten wurde während des Fossilisationsvorgangs in einem reduzierenden Ablagerungsmilieu allmählich durch Schwefelverbindungen ersetzt, die später zu Pyrit kristallisierten. Breite: elf Millimeter
Priscacara liops ein eozäner Barschartiger aus der für ihren Reichtum an hervorragend erhaltenen Fossilien bekannten Green-River-Formation, Wyoming, USA. Fische sind die häufigsten fossil überlieferten Wirbeltiere
Otodus obliquus, Tertiär. Unter den Fischfossilien gehören fossile Haizähne zu den häufigsten Funden

Als Fossil (vom lateinischen {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) für „(aus)gegraben“) oder Versteinerung, früher auch Petrefakt (vom griechischen „Stein“ und vom lateinischen {{Modul:Vorlage:lang}} Modul:Multilingual:149: attempt to index field 'data' (a nil value) für „das Gemachte“) genannt, bezeichnet man jedes Zeugnis vergangenen Lebens aus der Erdgeschichte. Im Gegensatz zur Versteinerung ist aber nicht jedes Fossil mineralisiert.

Derartige erdgeschichtliche Dokumente können sowohl körperliche Überreste (Körperfossilien) als auch Zeugnisse der Aktivität von Lebewesen (Spurenfossilien) sein, die älter als 10.000 Jahre sind und sich somit einem geologischen Zeitalter vor dem Beginn des Holozäns zuordnen lassen.[1] In der Biologie und Paläontologie werden die Arten, die bis zur Wende Pleistozän/Holozän ausstarben, als fossil bezeichnet und den rezenten Arten gegenübergestellt, denjenigen also, die heute noch leben oder erst im Laufe des Holozäns ausstarben.

Durch besondere Umstände sind manche Lebewesen nach ihrem Tod nicht verwest und zerfallen, sondern Bestandteile, Form und/oder Struktur blieben bis heute erhalten. Die fossilen Energieträger Erdöl, Erdgas und Kohle sind ebenfalls Überreste vorwiegend pflanzlicher Biomasse. Es muss dabei jedoch bedacht werden, dass auch jegliche Spuren von Lebewesen der Erdgeschichte, also unter anderem Abdrücke und versteinerte Exkremente (Koprolithe), zu den Fossilien gezählt werden.

Wissenschaftler gehen von etwa einer Milliarde Tier- und Pflanzenarten aus, die seit dem Beginn des Phanerozoikums vor 542 Millionen Jahren entstanden sind, manche rechnen sogar mit 1,6 Milliarden. Weit unter ein Prozent dieses Artenreichtums ist fossil erhalten geblieben, denn die Bedingungen für eine Fossilwerdung sind generell ungünstig und viele Fossilien sind im Laufe der Jahrmillionen von der Erosion zerstört worden. Forscher haben bis 1993 rund 130.000 fossile Arten wissenschaftlich beschrieben.[2]

Begriffe und Einteilung

Die Auffindung von Steinformen mariner Lebewesen auf dem Festland erregte bereits im Altertum von China bis Europa Aufmerksamkeit und sie wurden mehrfach richtig als Meereshinterlassenschaften gedeutet.[3] Die Bezeichnung „Fossil“ wurde erstmalig 1546 von Georgius Agricola in seinem Standardwerk De natura fossilium verwendet. Gängige Bezeichnungen für Fossilien waren auch „Petrefakt“ und „Versteinerung“, jedoch fälschlicherweise, da sie nur den häufigsten Erhaltungszustand eines Fossils umschreiben. Belegte man zunächst unterschiedslos alle „beim Ausgraben“ gefundene Kuriositäten mit dem Begriff „Fossil“, darunter auch Minerale, Artefakte, seltsam geformte Wurzeln oder Konkretionen, fand erst im Laufe der Zeit eine Bedeutungsverengung auf solche Objekte statt, die von der Existenz früheren Lebens zeugten. Der Naturforscher und spätere Geistliche Nicolaus Steno war der erste, der erkannte, dass es sich bei Fossilien nicht um Launen der Natur (Lusus naturae), sondern um Lebewesen aus früherer Zeit handelt.

Der Grenzbereich zwischen fossil und rezent wird als subfossil oder auch subrezent bezeichnet, er wird jedoch uneinheitlich gebraucht. „Subfossil“ können Zeugnisse bezeichnen, die aus den letzten 10.000 Jahren stammen, in der Paläobotanik bezeichnet es eine unvollständige Fossilisation, also einen bestimmten Erhaltungszustand. Danach können selbst Floren aus dem Paläogen als subfossil gelten.

Fossilien, die für einen kurzen Zeitabschnitt charakteristisch und räumlich weit verbreitet sind, können als Leitfossilien verwendet werden. Mit ihnen kann man das Alter von Gesteinsschichten aus verschiedenen Gegenden vergleichen (Biostratigraphie). Die wissenschaftliche Erforschung der Fossilien erfolgt in erster Linie durch die Paläontologie.

Einige heteromorphe Ammoniten und andere Fossilien, wie etwa der zu den Nautiloidea zählende Bischofsstab (Lituites), die eine ungewöhnliche Wuchsform aufweisen, werden als „aberrante Formen“ bezeichnet.

Fossilien werden unterteilt in:

  • Körperfossilien: Als solche bezeichnet man vollständig erhaltene Körper von Lebewesen, sowie auch deren teilweise erhaltenen Hartteile bzw. seltener auch Weichteile.
  • Steinkerne: Diese entstehen, wenn Lebewesen einen Hohlraum im Sediment hinterlassen, der später ganz oder teilweise mit Sediment verfüllt wird. Die Schale löst sich auf und es bleibt ein Innenabdruck.
  • Spurenfossilien: Spurenfossilien enthalten alle Hinweise auf Leben, die nicht das Lebewesen selbst betreffen. Beispielsweise Fußabdrücke, Bewegungs- und Grabspuren (Bioturbation), Ernährungsspuren (Fraß oder Kot (Koprolithen)), Fortpflanzungs- und Wohnspuren (Eier, Nest).
  • Inkohlungen: Unter Luftabschluss (im Wasser) werden organische Stoffe zu Kohlenstoff zersetzt.
  • Einschlüsse (Inklusen) in Bernstein: Ein Lebewesen oder Teile davon werden in Baumharz eingeschlossen, das sich mit der Zeit in Bernstein umwandelt.

Körperfossilien werden nach ihrer Größe und den jeweils verwendeten Arbeitstechniken weiter differenziert. Die Grenzen sind dabei fließend:

Fossilisationslehre

Permian Silicified Sclerobionts.JPG

Die Fossilisationslehre (Taphonomie) ist die Lehre, die sich mit der Entstehung von Fossilien beschäftigt. Da der abgestorbene Organismus (oder Hinterlassenschaften) mehrere Phasen durchläuft, bevor die Fossilisation abgeschlossen ist, benutzt die Fossilisationslehre die Erkenntnisse verschiedener anderer Disziplinen.

Bedeutung der Fossilien für die Evolutionstheorie

Dokumente der Lebensgeschichte

Vorlage:See also Die gefundenen Fossilien sind in ihrer Vielfalt eines der wichtigsten Argumente für die Evolutionstheorie. Sie zeigen uns, dass im Laufe der Geschichte des Lebens unzählige Organismenarten auf der Erde entstanden und verschwunden sind. Diese ehemalige Vielfalt ist allein aus der Kenntnis heutiger Formen heraus nicht zu beschreiben. In den Fossilien lernen wir nicht nur die Ahnen vieler in der Gegenwart lebender Organismen kennen, sondern auch einst blühende, aber nachkommenslos erloschene Tier- und Pflanzengruppen.

Zeugen vergangener Lebensräume

Fossilien dienen als Hinweise auf ehemalige geographische und ökologische Verhältnisse, also der ehemaligen Umwelt oder Paläoumwelt, mit der sich die Paläoökologie beschäftigt, denn jedes Lebewesen ist an einen bestimmten Lebensbereich gebunden und gibt uns als Fossil außerdem Auskunft über die besonderen Umstände, die zu seiner Erhaltung geführt haben.
Die Reste der verschiedenen Pflanzen- und Tiergruppen treten nacheinander in der Abfolge der Gesteine auf. Ältere Gesteinsschichten enthalten Fossilien einfacher gebauter Lebewesen, in jüngeren Schichten findet man Reste höherentwickelter Lebewesen. Dadurch kann man bestimmen zu welcher Zeit Tiere oder Pflanzen gelebt haben. Trotzdem ist die Überlieferung nur lückenhaft, weil nur wenige Organismen fossil werden und wenn, dann auch nur die Hartteile. So gibt es fast keine Überlieferungen von hartteillosen Organismen.

Lebende Fossilien

Auch die so genannten „lebenden Fossilien“ sind für die Evolutionsforschung von Bedeutung. Ein lebendes Fossil ist eine Tier- oder Pflanzenart, die sich in ihrem grundlegenden Körperbau (Morphologie) von ihren Vorfahren nur unwesentlich unterscheidet, also viele Merkmale erdgeschichtlich lange zurückliegender Evolutionsstadien in ihrem Erscheinungsbild konserviert hat. Das heißt ihr Grundbauplan hat sich mit den Jahren der Evolution nicht verändert. Das ermöglicht Paläobiologen Rückschlüsse auf die Lebensweise und das Aussehen der ausgestorbenen Vorläufer dieser Lebewesen zu ziehen.

Lebende Fossilien kommen vorwiegend als endemische Arten in isolierten Teilen der Erde vor, so auf Inseln, der Tiefsee oder tropischen Urwäldern. Derartige Lebensräume können hinsichtlich der Umweltbedingungen über viele Jahrmillionen weitgehend unverändert bleiben, dadurch wirkte auch die biologische Selektion immer gleich. Ohne den Zwang zur Anpassung an neue Verhältnisse stagniert auch die evolutionäre Entwicklung und die Art verändert sich morphologisch kaum mehr. Ein gutes Beispiel für derartige Sonderentwicklungen in isolierter Lage ist der Inselkontinent Australien und seine spezifische Fauna. Nach der Auflösung Gondwanas in die einzelnen Erdteile durch plattentektonische Kräfte, driftete die Australische Platte lange Zeit weitgehend isoliert in östliche Richtung, ein Kontinente übergreifender Artenaustausch fand nicht mehr statt. In der Abgeschiedenheit Australiens konnten somit Taxa (systematische Gruppen) von Tieren überdauern, die sonst fast überall ausgestorben sind, wie etwa die Kloakentiere (Protheria). Auch die Beuteltiere (Metatheria) bestanden hier fort und bilden eine artenreiche Gruppe, während es mit Ausnahme weniger Arten in Amerika auf der Erde sonst keine Vertreter dieser einstmals weit verbreiteten Gruppe mehr gibt. Zu den lebenden Fossilien gehören neben den Beuteltieren und Kloakentieren beispielsweise die Krokodile und Schildkröten, der Quastenflosser Latimeria sowie einige Eidechsen- und Schlangenarten. Bei den Pflanzen zählen Ginkgo biloba und der Urweltmammutbaum (Metasequoia glyptostroboides) als urtümliche Arten zu den lebenden Fossilien.

Methoden zur Altersbestimmung von Fossilien

Um den Ablauf der Evolution zu klären, muss man das Alter der Fossilien bestimmen. Es gibt dabei verschiedene Methoden der Altersbestimmung. Man kann sie unterscheiden in:

  1. Radiometrische Altersbestimmung
  2. Stratigraphische Altersbestimmung
  3. Altersbestimmung durch Leitfossilien

Radiometrische Altersbestimmungen

Die Entdeckung der Radioaktivität (1896) eröffnete die Möglichkeit der radiometrischen Altersbestimmung, die anders als die anderen Verfahren absolute Zeitangaben liefert und somit das Wissen über die Evolution entscheidend beeinflusste.

Grundlegende Theorie: Die Atome radioaktiver Isotope, beispielsweise von Uran (U) und Thorium (Th), zerfallen gesetzmäßig zu nichtradioaktiven Isotopen. Im einfachsten Fall wird bei der radiometrischen Altersbestimmung das Mengenverhältnis aus Mutter- zu Tochterisotop in einem Gestein oder Mineral festgestellt, woraus das Alter berechnet werden kann. In der Praxis werden jedoch meist standardmäßig kompliziertere Methoden, wie etwa die Isochronenmethode, angewendet, mit welchen die Zuverlässigkeit eines gemessenen Alters sichergestellt werden kann. Das Ergebnis bedarf sorgfältiger geologischer Interpretationen, so muss das datierte Ereignis nicht unbedingt der Bildung des Gesteins entsprechen, es kann z. B. auch späteren Ereignissen wie etwa Gesteinmetamorphosen entsprechen, welche in der Lage sind, die radiometrische Uhr „zurückzustellen“.

Kohlenstoff-14-Methode (Radiokohlenstoffmethode): Durch Stoffwechselprozesse bleibt das Niveau von Kohlenstoff 14 in einem lebenden Organismus in konstantem Gleichgewicht mit dem Niveau der Atmosphäre oder des Meeres. Mit dem Tod des Organismus beginnt Kohlenstoff 14 mit einer konstanten Geschwindigkeit zu zerfallen; der Kohlenstoff wird dann nicht mehr durch das Kohlendioxid in der Atmosphäre ersetzt. Der relativ schnelle Zerfall von Kohlenstoff 14 (Halbwertszeit 5730 Jahre) begrenzt im Allgemeinen den Datierungszeitraum auf ungefähr 50.000 Jahre, in manchen Fällen kann er bis 70.000 Jahre erweitert werden. Die Unsicherheit bei der Messung erhöht sich mit dem Alter der Probe, da über lange Zeit durch Diffusion Kohlenstoff aus dem umgebenden Gestein aufgenommen werden kann und sich so der Wert verfälscht.

Kalium-Argon-Methode: Mit dem Zerfall von radioaktivem Kalium 40 zu Argon 40 und Calcium 40 können Gesteine mit einem Alter größer als 100.000 Jahren bestimmt werden; bei jüngeren Gesteinen wird das radiogene Argon von nichtradiogenen Argon verdeckt. Kalium 40 kommt in gesteinsbildenden Mineralien wie Glimmern, Feldspäten und Hornblenden vor. Problematisch ist das Entweichen von Argon, wenn das Gestein Temperaturen über 125 °C ausgesetzt war, denn dadurch kann das Messergebnis verfälscht werden. Um das Problem mit dem nichtradiogenen Argon zu umgehen und eine Verfälschung durch hohe Temperaturen auszuschließen, wurde die Argon-Argon-Technik entwickelt. Damit können auch jüngere Gesteine datiert werden; beispielsweise wurde mit dieser Technik für die Zerstörung Pompejis durch den Ausbruch des Vesuvs ein Alter ermittelt, welches mit historischen Aufzeichnungen sehr gut übereinstimmt.

Rubidium-Strontium-Methode: Mit dieser sehr genauen und zuverlässigen Methode können die ältesten Gesteine datiert werden. Sie basiert auf dem Zerfall von Rubidium 87 zu Strontium 87 und wird häufig auch dafür eingesetzt, um Kalium-Argon-Datierungen zu überprüfen, da sich Strontium bei geringer Erwärmung nicht verflüchtigt, wie es beim Argon der Fall ist.

Methoden mit Blei: Das Blei-Alpha-Alter wird bestimmt, indem man den Gesamtbleigehalt und die Alphateilchenaktivität (Uran-Thorium-Gehalt) von Zirkon-, Monazit- oder Xenotimkonzentraten spektrometrisch bestimmt. Die Uran-Blei-Methode basiert auf dem radioaktiven Zerfall von Uran 238 in Blei 206 und von Uran 235 in Blei 207. Mit den Zerfallsgeschwindigkeiten für Thorium 232 bis Blei 208 kann man drei voneinander unabhängige Altersangaben für die gleiche Probe erhalten. Die ermittelten Blei-206- und Blei-207-Verhältnisse können in das so genannte Blei-Blei-Alter umgewandelt werden. Die Methode wird am häufigsten für Proben aus dem Präkambrium benutzt und liefert die genauesten Alter.

Schichtenabfolgen im Gestein (Stratigraphie)

Durch die Abfolge der Gesteinsformationen (Stratigraphie) kann man festlegen, welche Schichten älter und welche jünger sind. Da diese Methode keine absoluten Zahlen bringen kann, wird sie als relative Zeitskala bezeichnet. Zusammen mit den radiometrischen Messungen ergibt sich aber ein relativ genaues Bild, wie alt eine Gesteinsschicht ist und damit auch die darin erhaltenen Fossilien.

Leitfossilien

Megataspis sp., Ordovizium. Trilobiten sind wichtige Leitfossilien im Paläozoikum

Als Leitfossilien bezeichnet man Fossilien, die nur in einem begrenzten Abschnitt der Gesteinsfolgen vorkommen, aber weit verbreitet waren. Schichtungen, die Fossilien derselben Art aufweisen, müssen im selben Zeitabschnitt der Erdgeschichte abgelagert worden sein. Dadurch kann ein Vergleich der chronologischen Abfolge von Schichtungen erreicht werden, weshalb Leitfossilien auch ein unverzichtbares Element der Altersbestimmung in der Paläontologie sind.

Ein gutes Leitfossil sollte folgende Ansprüche erfüllen:

  • weite geographische Verbreitung
  • weitgehende Unabhängigkeit von Gesteinsausbildung (Fazies)
  • leichte Kenntlichkeit
  • häufiges Auftreten

Wichtige Beispiele sind einige

und einige Arten von

Beide Tiergruppen besiedelten einst die riesige Tethys unseres Planeten.

Bekannte Fundstätten von Fossilien in Deutschland

Prachtkäfer aus der Grube Messel mit Erhalt der ursprünglichen Strukturfarben
  • Grube Messel bei Darmstadt
  • Steinbrüche bei Solnhofen und Eichstätt
  • Holzmaden in Baden-Württemberg
  • Bundenbach in Rheinland-Pfalz
  • Geiseltal bei Halle/Saale (Sachsen-Anhalt)
  • Bilzingsleben in Thüringen
  • Doberg bei Bünde, siehe auch Dobergmuseum
  • Kalksteinbruch Rüdersdorf bei Berlin
  • Ziegeleigrube Vorhalle bei Hagen
  • Stöffel-Park in Enspel
  • Sandgrube Grafenrain in Mauer (Baden) bei Heidelberg, siehe auch Unterkiefer von Mauer
  • Steinheim an der Murr, siehe auch Homo steinheimensis
  • Saurierfundstätte Bromacker in Thüringen
  • Sandelzhausen bei Mainburg[4]

Fossilien befinden sich oft in natürlichen Aufschlüssen (Gestein tritt an die Erdoberfläche) oder künstlichen Aufschlüssen (zum Beispiel Steinbrüche, beim Straßen- oder Tunnelbau).

Berühmte Fossilien

Nicht nur Dinosaurierfunde professioneller Paläontologen wurden berühmt, bedeutende Funde sind auch Hobbypaläontologen zu verdanken. So zum Beispiel die verschiedenen Exemplare des „Urvogels“ Archaeopteryx aus dem Solnhofener Plattenkalk. Ein weiteres Beispiel ist das ungewöhnlich vollständige Skelett „AL 288-1“ eines weiblichen Australopithecus afarensis, genannt „Lucy“. Für seine ungewöhnliche Erhaltung bekannt wurde der im Eis konservierte Körper des Steppenbisons „Blue Babe“. Der weltgrößte Ammonit (Kopffüßer) Parapuzosia seppenradensis mit über 170 Zentimeter Gehäusedurchmesser befindet sich heute im Naturkundemuseum Münster.

Fossilienfälschungen

In der Geschichte der Paläontologie kam es auch immer wieder zu bekannten Fälschungen von Fossilien. Einer der ältesten Fälle sind die Würzburger Lügensteine aus dem 18. Jahrhundert, bei denen angebliche Fossilienfunde einem gutgläubigen Forscher untergeschoben wurden. Aus jüngerer Zeit stammt der Fall des Archaeoraptor, eines angeblichen Bindeglieds zwischen Dinosauriern und Vögeln.

Pseudofossilien und Dubiofossilien

Als Pseudofossilien oder Scheinfossilien werden (natürliche) anorganische Bildungen bezeichnet, die an Organismen erinnern (vgl. Lusus naturae). Zu den bekanntesten Erscheinungen dieser Art gehören die an filigrane Korallenstrukturen erinnernden Mangandendriten, wie sie beispielsweise häufig im Solnhofener Plattenkalk anzutreffen sind oder Faserkalk, der mitunter fossilisiertem Holz ähnelt.[5] Dubiofossilien bezeichnet echte Fossilien, deren taxonomische Stellung zweifelhaft ist. Der Begriff wird darüber hinaus auch für Fossilien verwendet, die nach ihrem Erscheinungsbild ein anderes Fossil vortäuschen.[6]

Siehe auch

Weblinks

Wiktionary: fossil – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen
Commons: Fossilien – Sammlung von Bildern, Videos und Audiodateien

Einzelnachweise

  1. [1] („It is sometimes suggested that a useful age definition for fossils is 10,000 years old or more, but it is never a rigidly applied rule.“ – Übersetzung: Es wird manchmal vorgeschlagen, dass 10.000 Jahre und mehr eine nützliche Definition für das Alter von Fossilien ist, aber dies ist keine strikt befolgte Regel.) und [2]
  2. Peter Wellnhofer: „Die große Enzyklopädie der Flugsaurier“, Mosaik Verlag, München, 1993. S. 13. Aus: E. Kuhn-Schnyder (1977): „Die Geschichte des Lebens auf der Erde“. Mitteilungen der Naturforschenden Gesellschaft des Kantons Solothurn, 27. Der Beginn des Kambriums wird bei Wellnhofer allerdings mit 590 Millionen Jahren angegeben.
  3. Udo Kindermann: ‘Conchae marinae. Marine Fossilien in der Fachliteratur des frühen Mittelalters’, in: Geologische Blätter für Nordost-Bayern und angrenzende Gebiete 31 (1981), S. 515-530.
  4. Volker Fahlbusch, Renate Liebreich: Hasenhirsch und Hundebär: Chronik der tertiären Fossil-Lagerstätte Sandelzhausen bei Mainburg. Hrsg.: Freunde der Bayerischen Staatssammlung für Paläontologie und historische Geologie München e. V. Verlag Dr. Friedrich Pfeil, 1996, ISBN 978-3-931516-07-9.
  5. *Arbeitskreis Paläontologie Hannover, Zeitschrift für Amateur-Paläontologen 1983
  6. Ulrich Lehmann: Paläontologisches Wörterbuch. 2. Aufl., Stuttgart 1977.

News mit dem Thema Fossil